MCR 3UI - U7-D2 - Arithmetic Sequences new LESSON ...

MCR3UI Arithmetic Sequences

UT D2
What is similar about the following sequences?
$2+2+2$
a) $\quad 3,5,7,9,11$
b) $\quad-1,4,9,14,19$
c) $\quad \stackrel{-3}{-3}, 17,14,11,8$
All have a common
difference
\rightarrow created by a innear
equation:

All of these sequences are classified as arithmetic sequences since each term is generated by adding a COMMON DIFFERENCE or ' d ' to the previous term. The first term is designated as \qquad 'a' _.

An arithmetic sequence looks like:-
$a, a+d, a+2 d, a+3 d, a+4 d \ldots$.
In general

$$
t_{n}=a+(n-1) d
$$

$t_{n}=$ 'General Term' or 'the $\mathrm{n}^{\text {th }}$ term'
$n=$ 'number of terms' or 'term number'

$$
\begin{aligned}
a= & \text { value of the first term }\left(t_{1}\right) \\
d= & \text { common difference } \\
& \text { between terms }
\end{aligned}
$$

Examples:

1. Determine t_{n} and t_{50} for the following arithmetic sequences:

$$
\begin{array}{lll}
\text { a) } \underbrace{2,4,10,14+\cdots}+4 & & \\
a=2 & t_{n}=a+(n-1) d & \\
d=4 & t_{50}=2+(n-1)(4) & t_{50}=4(50)-2 \\
& t_{n}=2+4 n-4 & t_{50}=200-2 \\
& t_{n}=4 n-2 &
\end{array}
$$

b) $\frac{10}{1}, \frac{19}{2}, \frac{9}{1}, \frac{17}{2} \ldots \frac{20}{2}, \frac{19}{2}, \frac{18}{2}, \frac{17}{2} \ldots$

$$
\begin{aligned}
& a=10 \\
& d=-\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& t_{n}=a+(n-1) d \\
& t_{n}=10+(n-1)\left(-\frac{1}{2}\right) \\
& t_{n}=10-\frac{1}{2} n+\frac{1}{2} \\
& t_{n}=-\frac{1}{2} n+\frac{21}{2} \\
& \text { OR } \\
& t_{n}=\frac{21}{2}-\frac{1}{2} n
\end{aligned}
$$ consecutive terms to determine d

$$
\begin{aligned}
& d=\frac{19}{2}-\frac{20}{2} \\
& d=-\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
t_{50} & \rightarrow \text { sub } n=50 \\
t_{50} & =-\frac{1}{2}(50)+\frac{21}{2} \\
& =\frac{-50}{2}+\frac{21}{2} \\
t_{50} & =-\frac{29}{2}
\end{aligned}
$$

2. Determine the number of terms in the sequence

$$
3,7,11,15 \ldots 199
$$

$$
\underbrace{3,}_{+4} \underbrace{7,11,15 \ldots 19 .}_{+4} \underbrace{15}_{+4} k_{n=?}
$$

$$
\begin{aligned}
& a=3 \\
& d=4 \\
& t_{n}=199
\end{aligned}
$$

$$
\begin{aligned}
& t_{n}=a+(n-1) d \\
& 199=3+(n-1)(4) \\
& 199=3+4 n-4 \\
& 199=4 n-1 \\
& 200=4 n \\
& \frac{200}{4}=n \\
& |n=50|
\end{aligned}
$$

\therefore the sequence has 50 terms.
3. Determine t_{50} if $t_{4}=5$ and $t_{11}=26$ for an arithmetic sequence.

* use substitution or elimination to solve t

$\begin{aligned} \therefore t_{n} & =-4+(n-1)(3) \\ t_{n} & =-4+3 n-3 \\ t_{n} & =3 n-7 \mid\end{aligned}$

4. Describe the arithmetic sequence $t_{n}=3 n-2$ as a recursive sequence.

$$
\begin{aligned}
& t_{1}=3(1)-2 \quad t_{2}=3(2)-2 \quad t_{3}=3(3)-2 \text { based on the } \\
& t_{1}=1 \rightarrow \underbrace{t_{2}=4}_{+3} \rightarrow \begin{array}{c}
\text { take the previous term } \\
\text { value and add } 3 \text {. }
\end{array} \\
& t_{n}=t_{n-1}+3, t_{1}=1, n \geqslant 2
\end{aligned}
$$

