

MCR 3UI - U7 - D1 - Intro to Sequences LESSON 2018

Introduction to Sequences

U7 D1

A function can be used to generate a sequence of numbers :

Example:
$$f(x) = x^2$$
 generates

$$f(2) = 4$$
 $f(3) = 9$ $f(4) = 16$

$$f(3) = 9$$

We have the sequence 1, 4, 9, 16

Thus a sequence is the set of numbers generated by a function, f(x), if x is restricted to the Natural Numbers.

N={1,2,3,4,...} (country numbers)

Each element in a sequence is referred to as a **TERM**. We use **t** with a **SUBSCRIPT** to indicate a specific **TERMS**.

$$t_2 = 4$$

$$t_3 = 9$$

i.e.,
$$t_1 = 1$$
 $t_2 = 4$ $t_3 = 9$ $t_4 = 16$

Types of Sequences

1. Finite Sequence:

A set of a limited number of numbers that follow a mathematical pattern

2. Infinite Sequence:

A set of an unlimited number of numbers that follow a mathematical pattern

In general, sequences can be generated using functions that utilize individual or combined mathematical operations, or even previous numbers in the sequence.

1. Arithmetic Sequences: sets of numbers with a common difference generated from a linear function, f(n), with $n \in \mathbb{N}$

E.g.,
$$t_n = n + 6$$

2. Geometric Sequences: sets of numbers with a common ratio generated from an exponential function, f(n), with $n \in \mathbb{N}$.

E.g.,
$$t_n = -3^n$$

generates the sequence: -3, -9, -27, ...

3. Recursive Sequences: sets of numbers generated by using previous numbers in the

sequence. E.g., $t_{k+2} = t_k + t_{k+1}$, where $t_1 = 1$ and $t_2 = 1$ 1, 1, 2, 3, 5, 8, 13, ... $t_3 = t_1 + t_2$ $t_3 = 1 + 1$ Examples: $t_3 = 2$ $t_4 = 2 + 3$

1. Write the first 3 terms for the following sequences:

a)
$$t_n = n^3 - 5$$

$$t_2 = (2)^3 - 5$$

$$t_2 = (3)^3 - 5$$

$$t_3 = 22$$

c)
$$t_k = t_{k-1} + k$$
, where $t_1 = 5$

b)
$$t_n = n^2 + 2n$$

$$t_2 = (2)^2 + 2(2)$$

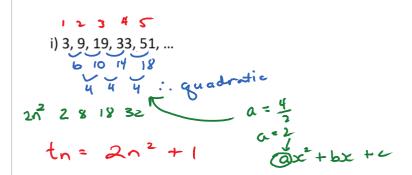
$$+3 = (3)^2 + 2(3)$$

$$t_2 = t_1 + 2$$
 $t_3 = t_2 + 3$ $t_4 = t_3 + 4$
= 5 + 2 = 7 + 3 = 10 + 4
 $t_2 = 7$

$$t_3 = t_2 + 3$$
= 7 + 3
= 10

5,7,10,14

+ To find any term in this sequence, take the previous term and add the term number.


2. Write the general term for each of the following.

d)
$$\frac{1}{2}$$
, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$

$$t_n = \frac{n}{n+1}$$

f)
$$\frac{2}{8}, \frac{15}{8}, \frac{7}{4}, \frac{13}{8}, \frac{3}{2}, \dots$$
 try a commo $\frac{16}{8}, \frac{15}{8}, \frac{14}{8}, \frac{13}{8}, \frac{12}{8}, \dots$ denominates

$$t_n = \frac{17 - n}{8}$$
or
 $t_n = \frac{-n + 17}{8}$

