Date:_____

Review of Prerequisite Skills for Chapter 3

MCB 4UI

I Review of Slopes and Equations of Lines

Slope: The **slope** is the measure of the steepness of a line.

$$slope = \frac{rise}{run}$$

 $m = -----$

Equation of a Line: i) slope y-intercept form or ii) standard form

y = mx + b

 $Ax + By + C = 0, A, B, C \in I, A > 0$

Note: i) A Vertical Line has a slope that is ______ and an equation of the form ______.

ii) A Horizontal Line has a slope that is ______ and an equation of the form ______.

Ex. 1. Find the equation of the line determined by the given information.a) slope -2, y-intercept 3

b) horizontal, through (-2,5)

c) through (-2,4) & (-6,6)

II Rationalizing the Denominator or Numerator

A **rational number** either repeats or terminates in its decimal form. An **irrational number** neither repeats nor terminates in its decimal form.

Ex. 1. Rationalize each *denominator*.

a)
$$\frac{1}{2\sqrt{3}}$$
 b) $\frac{1+2\sqrt{2}}{\sqrt{3}}$ c) $\frac{\sqrt{3}}{1-2\sqrt{3}}$

Ex. 2. Rationalize each numerator.

a)
$$\frac{2\sqrt{5}}{3}$$
 b) $\frac{\sqrt{3}+\sqrt{5}}{5}$

III Domain and Range

The **domain** is the set of all *x*-values for which a relation is defined. The **range** is the set of all possible *y*-values.

Ex. 1. State the domain and range of the following.

a)
$$y = x^2 - 8$$

b) $2x - 3y + 6 = 0$

c)
$$y = \frac{2}{x+1}$$
 d) $y = -\sqrt{x+2} - 3$

H.W. pg. 72

A: Factoring

Common Factor 1. Factor $-4x^3 + 16x^2$

Trinomial Factoring	2.	Factor completely
		a) $x^2 - x - 20$

b) $8x^2 - 22x + 12$

Difference of Squares Recall: $a^2 - b^2 = (a - b)(a + b)$

3. Factor completely a) $25x^2 - 16y^2$ b) $x^4 - 81$

Grouping

4. Factor by grouping a) ax + cx - ay - cy b) $a^2 - b^2 + 9 - 6a$

HW.

In *11, the question should read 32-112+10

1. Solve a) 2x - y = -2 x + 2y = -6b) $x^2 + 3x - 10 = 0$

<u>C:</u> Function Notation

1. Evaluate each of the following for $f(x) = -2x^2 + 3x - 5$. a) f(0) b) f(-2)

D: Finite Differences

1. Use finite differences to determine whether each relation is *linear*, *quadratic* or neither. a) $x \mid f(x)$ b) $x \mid f(x)$

1) -	<i>x</i>	f(x)	b) <i>x</i>	f(x)
-	1	3	1	50
	2	5	2	32
	3	7	3	18
	4	9	4	8
	5	11	5	2

HW.