

2. Calculate the perimeter and the area for the following figure. Show your work for full marks. (10 marks)

5. Allie has 64 pieces of plastic garden fencing. Each piece is 1 m long. She plans to create a rectangular flower garden enclosed by the fencing. She wants the garden to have the maximum possible area so she uses an <u>existing</u> fence for one side of the garden. She only has to enclose the remaining three sides with her plastic garden fencing.

a) What are the dimensions of the garden she should make?	b) What is the area of the garden?
c) What is the perimeter of the <u>entire</u> garden?	

6. Water is being poured from one container to another as shown. The water flows from the top container to the square based pyramid below. The water from the top container completely fills the bottom pyramid. What is the height of the pyramid?

8. Express as a fraction and reduce to lowest	9. Evaluate
terms 0.04	-12 3
	- + 3 + 3 - + 3
	5 4
10. Simplify $-2(x^2-3x-6)-(5x^2-x+10)$	11. Simplify. Answers should have
	$12x^8y^5$
	POSITIVE EXPONENTS. $\frac{1}{(1-2)(1-2)}$
	$(2x^{-9}y^{-2})(9x^{7}y^{-3})$
	12 Simplify EIDST then evaluate for a - 2 and b-1
12 F = 12 F = 1 s = 3 s = 1 s = -3 s = (-3)	15. Simplify FIRST then evaluate for a=-5 and b=1
12. Evaluate. $\frac{-10}{5}$	$2b(5b - 2ab - 4) + b^2(7b - 2a - 8)$
5 0 5 (10)	2D(-3D-3dD-4)+D(7D-2d-8)

MPM1DW	М	ock Exam		Name:
 14. Write the equation form that is perpenand has the same y-6 = 0 	of the line in sta dicular to 3x + 6 intercept as 3 <i>x</i> -	ndard 5y – 1 = 0 – 2y –	15	5. Write the equation of a line in standard form Of a line that passes through (-1,7) and (5,8)
16. Draw a line that is parallel to $2x - 3y + 1 = 0$ and has the same y-intercept as $2x + y - 2 = 0$			i 17 a)	7. Solve the following equations:) $2(3y + 5) = 3(y + 2) - 2$
	y			
	n 8 4 7	Α. β.	b)	$) \frac{3x}{9} + \frac{2x+3}{3} = 4$
a) Find the equation o drawn and write it i	f the line that yo n Standard For	u have ' m .		
18. Simplify $\frac{\left(-3xy^2z^3\right)}{\left(-3x^2y^2\right)}$	$\frac{)^{3}}{2}$		19	9. Find the slope and y intercept of the line $5x - 2y + 10 = 0$
20. The table gives the	amount, in billio	ns of do	lars, spent	nt on elementary and secondary education in
Year 1971 1976	1981 1986	1991	996 ^{Ca}	anada in several years
Spending510(\$Billions)	17 23	33	6	
a) Display the c b) Draw the lin c) Find an equa	lata on a scatter e of best fit. tion for the line	plot. of best f	t.	