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Welcome to Addison-Wesley 
Geometry and Discrete Mathematics 12…
This book is about methods of proof, and your independent investigation of
extended problems, as well as the development of new mathematical content.

The Ontario curriculum for Geometry and Discrete Mathematics has three
strands: Geometry, Proof and Problem Solving, and Discrete Mathematics. The
structure of Addison-Wesley Geometry and Discrete Mathematics 12 mirrors
the structure of the course, with a unit that relates to each strand in the
curriculum.

Unit I Geometry

Unit II Proof and Problem Solving

Unit III Discrete Mathematics

The methods of proof, and opportunities for problem solving, appear
throughout Units I and III. Unit II presents insights into the reason for proof,
specific methods of proof, and many thought-provoking examples and exercises
in which you devise your own approach to solve a problem.

The curriculum includes several expectations that invite content extensions, and
larger, more comprehensive problems for you to solve. The course emphasizes
the solving of a problem over an extended period of time, with opportunities to
reflect, and then return to find new perspectives, and to generate alternative

solutions. You will use a variety of tools to explore many aspects of a problem.
For example, you will solve a linear system by hand, by using a graphing
calculator, and by using a spreadsheet.

Many exercises in Addison-Wesley Geometry and Discrete Mathematics 12
will challenge your thinking. Opportunities for extensions of content, and for
solving classic problems, are provided in Performance Problems, which
appear five times in the book, after chapters 3, 4, 5, and 7, and with
Cumulative Performance Problems at the end. Performance Problems
include sections that focus on:

Vector proofs using linear combinations
Circle properties to investigate and prove
Probability

vii
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Chapter Elements
Numbered Sections
These develop the new content of the course. 

Take Note boxes highlight important results or definitions, and should be part
of your study notes.

Something to Think About appears regularly. It prompts you to reflect on the
thinking behind an example or problem solution, to think about alternative
methods of approach, or to consider connections with other topics.

Exercises are organized into A, B, and C categories according to their level of
difficulty. 

Each exercise set identifies exercises for specific categories of the provincial
Achievement Chart. These exercises show you what to expect when you 
are assessed on any of the four categories. We have highlighted exercises as
examples only. A labelled exercise may not be limited to one category, but 
the focus helps to simplify assessment.

Ongoing Review
The Mathematics Toolkit in each Chapter Review summarizes important
chapter results. Use the toolkit and the Review Exercises to study for a 
chapter test.

The Self-Test at the end of each chapter helps you prepare for a class test.

Performance Problems provide extended problems of the type that are
emphasized in this course. These problems may relate to content from any or all
units in the book.

Communication
Communication is a key part of all learning. Clear communication is essential
in the process of proving results. A valid proof requires clear, logical
communication that presents a compelling case. This book, with its stress on
proof and problem solving, emphasizes communication. It also provides many
ways for you to improve your mathematical communication.



ix

The Solutions to Examples model clear, concise mathematical communication.
Reading and understanding an Example solution will help develop your
communication skills.

Something to Think About prompts you to reflect on solutions or the
implications of new concepts, and to share your thinking. 

Selected Exercises ask you to explain your reasoning, or describe your
findings. Each numbered section also contains an exercise highlighted with 
a “Communication” emphasis.

Unit II, with its focus on the methods of proof, provides new strategies for developing
communication skills.

Independent Learning
Performance Problems provide opportunities for you to explore new areas of
content in self-directed study, with other students and on your own. 

This text includes appendices that can help you develop independent 
learning skills:

• Answers are provided for all content-based exercises; proofs are available in the Solutions
section of the Teacher’s Resource Book. Conscientious students can use both answers and
solutions to support their learning.

• A Student Reference provides a comprehensive review of prerequisite results, terms, concepts,
and skills. There are cross-references to this appendix when prerequisite material is required
during core development.

Assessment
Several features of this book relate to a balanced assessment approach.

• Achievement Chart Categories highlighted in each exercise set

• Communication opportunities in Examples and exercises

• Self-Tests at the end of each chapter

• Performance Problems with rich, extended problems that address all four categories of the
Achievement Chart 
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Geometric and Cartesian Vectors 1Geometric and Cartesian Vectors 1
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to copyright issues.
Curriculum Expectations
By the end of this chapter, you will:

• Represent vectors as directed line
segments.

• Perform the operations of addition,
subtraction, and scalar multiplication on
geometric vectors.

• Determine the components of a
geometric vector and the projection of a
geometric vector.

• Model and solve problems involving
velocity and force.

• Determine and interpret the dot 
product … of geometric vectors.

• Represent Cartesian vectors in two-
space … as ordered pairs .…

• Perform the operations of addition,
subtraction, scalar multiplication, dot
product, … on Cartesian vectors.



Your previous work in mathematics has been based on quantities called scalars
that can be described by a single real number that specifies their magnitude, or 
size. Distance, area, and the value of a trigonometric function are all examples of
scalar quantities. In this unit, we will look at other quantities called vectors that 
are described by specifying both a magnitude and a direction. The acceleration 
due to gravity is an example of a vector. It is described by specifying a magnitude
(usually about 9.8 m/s2) and a direction (always vertically downward).

Some scalar quantities have corresponding vector quantities. 

Vector quantityScalar quantity

Displacement is distance

travelled in a given direction. 

It is a vector quantity.

Maya lives 100 km northeast of 

Kitchener.

Distance is a scalar quantity.

Maya lives 100 km from

Kitchener.

Velocity is speed in a given 

direction. It is a vector quantity.

The velocity of the airplane is 

Speed is a scalar quantity.

The airplane is travelling at a 

Maya lives 

somewhere 

on the circle.

100 km

Kitchener

N

W E

S

100 km

KitchenerKitchener

Maya’s house

Geometric Vectors1.1
900 km/h west.speed of 900 km/h.

N

W E

S

900 km/h
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1.1 GEOMETRIC VECTORS 5

A geometric vector is represented by an arrow called a directed line segment.
The length of the line segment represents the magnitude of the vector and the
arrowhead points in the direction of the vector.

A vector from point A to point B is written 
−⇀
AB, where A is the tail 

or initial point of the vector and B is the head or terminal point. A
vector can also be labelled by a lowercase letter with an arrow 
above, such as −⇀v . The magnitude of the vector is written as 

∣∣−⇀AB
∣∣

or 
∣∣−⇀v ∣∣. The absolute value bars remind us that the magnitude 

must be non-negative because it represents a length. 

The direction of a vector can be described using the main compass
directions of north, south, east, or west. Bearings can also be used.
North is taken as 000˚. Then, moving clockwise, all other directions
are assigned a number up to 359˚. For example, northeast is 045˚,
due south is 180˚, and southwest is 225˚.

Vectors are usually drawn to scale so that the length and direction 
of a line segment accurately reflects the magnitude and direction of 
the vector. Unless otherwise stated, we will assume that north is at 
the top of the page.

Draw vectors to represent:

a) a displacement of 30 km northeast

b) a weight of 50 N acting vertically downward

c) a velocity of 230 km/h on a bearing of 310˚

Example 1

0

2
7

0

180

9
0

340

320

30
0

2
8

0
2

6
0

24
0

220

200 160

140

120

1
0

0
8

0

60

40

20

North
000˚

East
090˚

West
270˚

South
180˚

A

B

tail (initial point)

head
(terminal point)v

N is the symbol 
for newtons, the
metric unit of force.

Mr. Tanaka has a weight of 

980 N (downward).

Mr. Tanaka has a mass of 100 kg.

100 kg 980 N

Weight is force downwards due 

to gravity. It is a vector quantity.

Mass is a scalar quantity.



Solution

a) Choose a convenient scale such as 1 cm : 10 km. Select a 
convenient initial point. Use a protractor to mark a direction 
45˚ east of north. Construct a line segment 30 ÷ 10, or 3 cm 
long. Add an arrowhead at the terminal point. Label the vector.

b) Use the scale 1 cm : 20 N. Construct a line segment 50 ÷ 20,
or 2.5 cm long. Draw the arrowhead pointing to the bottom 
of the page.

c) Use the scale 1 cm : 50 km/h. To find a bearing of 310˚,
measure 310˚ clockwise from north, or measure 
360˚ − 310˚ = 50˚ counterclockwise from north. Mark the
bearing and construct a line segment 230 ÷ 50, or 4.6 cm long.

In mathematics, we often use vectors to represent a translation or 
a slide. In the diagram at the right, �ABC is mapped under a slide 
onto �XYZ. The mapping is represented geometrically by drawing 

vectors 
−⇀
AX,

−⇀
BY, and 

−⇀
CZ from points A, B, and C to their respective 

images X, Y, and Z. The length of the vectors indicates the distance 
moved under the translation and their direction indicates the direction
of the translation.

When a figure is translated, each point on the figure moves the same distance in
the same direction. Hence, the vectors 

−⇀
AX,

−⇀
BY, and 

−⇀
CZ have the same magnitude

and direction. They are equivalent or equal vectors. 

Observe that equal vectors need not have the same location in space; they need 
not have the same initial point and the same terminal point. Therefore, a single
vector can have many representations. This is a key property of geometric vectors.

Equal Vectors
Equal vectors have the same magnitude and direction. 

The vectors −⇀a and 
−⇀
b below are equal since 

∣∣−⇀a ∣∣ =
∣∣−⇀b ∣∣ and the 

direction of −⇀a is the same as the direction of 
−⇀
b . We write −⇀a =

−⇀
b .

Take Note

A

C

B

X

Z

Y

50 km/h

310˚

N

50 N

30 km45˚

N

6 CHAPTER 1 GEOMETRIC AND CARTESIAN VECTORS
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⇀
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On page 6, we used the vectors 
−⇀
AX,

−⇀
BY, and 

−⇀
CZ to represent 

the translation that maps �ABC onto �XYZ. We can represent 
the inverse translation that maps �XYZ onto �ABC by reversing 
the directions of 

−⇀
AX,

−⇀
BY, and 

−⇀
CZ to get their respective opposites,−⇀

XA,
−⇀
YB and 

−⇀
ZC. We indicate that 

−⇀
AX and 

−⇀
XA are opposites by 

writing 
−⇀
XA = −

−⇀
AX.

In the diagram, ABCD is a parallelogram. 

List 2 pairs of equal vectors.

List 2 pairs of opposite vectors.

Solution

Since opposite sides of a parallelogram are equal,
∣∣−⇀AB

∣∣ =
∣∣−⇀DC

∣∣.
Furthermore,

−⇀
AB and 

−⇀
DC have the same direction. 

Hence,
−⇀
AB and 

−⇀
DC are equal vectors.

Similarly,
−⇀
DA and 

−⇀
CB are equal vectors.

One pair of opposite vectors is 
−⇀
AB and 

−⇀
CD.

Another pair of opposite vectors is 
−⇀
DA and 

−⇀
BC.

A B

CD

Example 2

Opposite Vectors
Opposite vectors have the same magnitude, but act in opposite directions. 

The vectors −⇀a and 
−⇀
b below are opposites since 

∣∣−⇀a ∣∣ =
∣∣−⇀b ∣∣ and the 

direction of −⇀a is opposite to the direction of 
−⇀
b . We write −⇀a = −

−⇀
b .

Take Note

A

C

B

X

Z

Y

⇀a

⇀
b



1. State whether each quantity is a vector or a scalar.

a) age b) volume c) displacement d) mass

e) force f) area g) temperature h) weight

i) speed j) density

2. Which of the following can be described by a vector?

a) a wind of 35 km/h from the northeast

b) a barbell of mass 40 kg 

c) a time of 14 min

d) a distance of 14.7 km

e) a weight on Mars of 300 N

f) an advance of 15 km due east

g) a speed of 85 km/h

h) a force of 15 N directed downward

3. Find the magnitude and direction of each vector. Use a ruler and the given
scale to determine the magnitude. Use north, south, east, west, northwest,
northeast, southwest, or southeast to describe the directions.

a)

b) c)

d) e)

Scale: 1 mm : 5 m
Scale: 1 mm : 1 m/s2

Scale: 1 cm : 10 km/h
Scale: 1 cm : 10 m

Scale: 1 cm : 10 m/s

A

Exercises1.1
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4. Identify pairs of vectors that appear to be equal. 

5. Knowledge/Understanding Use the geometric properties of each figure to
list all pairs of equal vectors.

a) b)

c) d)

6. List two pairs of equal vectors and two pairs of opposite vectors.

7. Communication If X is the midpoint of YZ, explain why 
−⇀
XY = −

−⇀
XZ.

XY Z

F E D

A B C

E and B are midpoints of 
sides DF and AC respectively. 

A B

C

DE

F
G

ABCDEF is a regular hexagon 
with centre G. 

L

K

J

A

CB
J, L, and K are midpoints of sides 
AB, AC, and BC, respectively.

T

P

S R

QA B

D C

B

A C

D

G H

E

F

J

K L

M

N
R

SV

W

U TP

Q

O

B

1.1 GEOMETRIC VECTORS 9



8. Construct a scale drawing of each vector. The direction of each vector is
given in the square brackets.

a) 50 km/h [north] b) 12m/s [095˚]

c) 500 N [southeast] d) 2.5 m/s2 [335˚]

e) 7 m [270˚]

9. For each vector in exercise 8, describe and draw the opposite vector.

10. ABCD is a square of side length 3 cm. 

a) State whether each statement is true or false. Explain.
i)

−⇀
AB =

−⇀
BC ii)

∣∣−⇀AB
∣∣ =

∣∣−⇀BC
∣∣ iii)

∣∣−⇀BA
∣∣ = −

∣∣−⇀CB
∣∣

b) Calculate the magnitude of 
−⇀
AC.

11. Thinking/Inquiry/Problem Solving Explain your answer to each
question. Use a diagram.

a) If −⇀u = −⇀v , is it always true that 
∣∣−⇀u ∣∣ =

∣∣−⇀v ∣∣?
b) If 

∣∣−⇀u ∣∣ =
∣∣−⇀v ∣∣, is it always true that −⇀u = −⇀v ?

12. Application The fractions 2
3

, 4
6

, 6
9

,… are all equivalent to the fraction 2
3

. 

Explain how the concept of equivalent fractions is analogous to the concept 
of equivalent vectors.

Cathleen S. Morawetz (1923– )
Born: Toronto, Canada  

Born into a mathematical family of
Irish descent, Morawetz attended
the University of Toronto to study
mathematics. She received a PhD
from New York University and was
a professor there for many years.
Morawetz became director of the
university's Courant Institute of
Mathematical Sciences in 1984—the
first woman to hold such a position.
In 1998, Morawetz was awarded the
National Medal of Science, the
highest scientific honour bestowed
by the USA. Her current research
includes work in fluid dynamics and
wave propagation.

A B

CD

3 cm
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In Section 1.1, we used vectors to represent displacements 
such as translations. 

In the diagram at the right, point A has been translated to point B 
then to point C under the displacements 

−⇀
AB and 

−⇀
BC respectively.

Observe that the single displacement 
−⇀
AC is equivalent to successive

displacements 
−⇀
AB and 

−⇀
BC. We call 

−⇀
AC the resultant or sum of 

−⇀
AB

and 
−⇀
BC, and write 

−⇀
AC =

−⇀
AB +

−⇀
BC. Since the three vectors form a

triangle, we call this method of adding vectors the Triangle Law. 
Observe that the vectors being added are arranged sequentially from head-to-tail.

Given the vectors −⇀a and 
−⇀
b :

a) Draw the vector −⇀a +
−⇀
b .

b) Draw the vector 
−⇀
b + −⇀a .

c) Prove that −⇀a +
−⇀
b =

−⇀
b + −⇀a .

Solution −⇀ ab ⇀⇀

a

b
⇀

⇀

Example 1

Triangle Law of Vector Addition
Let −⇀a and 

−⇀
b be any two vectors arranged head-

to-tail, as shown. The sum, −⇀a +
−⇀
b , is the vector 

from the tail of −⇀a to the head of 
−⇀
b .

Take Note

A

C

B

Adding Vectors1.2

a + b

b

a

⇀

⇀

⇀

⇀

1.2 ADDING VECTORS 11

a) Arrange the vectors sequentially by translating the tail of b to 
the head of −⇀a (see diagram at the right). 

Draw a vector from the tail of −⇀a to the head of 
−⇀
b .

This is the vector −⇀a +
−⇀
b .

b) Translate the tail of −⇀a to the head of 
−⇀
b . Draw a vector from 

the tail of 
−⇀
b to the head of −⇀a . 

This is the vector 
−⇀
b + −⇀a .

c) Use parts a and b. The vectors −⇀a +
−⇀
b and 

−⇀
b + −⇀a have the same

magnitude and direction. So, they are equal vectors. 

That is, −⇀a +
−⇀
b =

−⇀
b + −⇀a .

a b

a+b

⇀ ⇀

⇀ ⇀

ab

a + b⇀

⇀⇀

⇀
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Vector addition has properties that are similar to the properties of addition in 
arithmetic. For example, two numbers can be added in either order: x + y = y + x .
This property is called the commutative law of addition. Example 1 shows that
vector addition also satisfies the commutative law. That is, if −⇀a and 

−⇀
b are any 

two vectors, then:
−⇀a +

−⇀
b =

−⇀
b + −⇀a

In the exercises, you will prove two other properties of vector addition 
(exercises 8 and 10).

To add three or more vectors, we place them head-to-tail so that the tail of the
second vector is at the head of the first vector, the tail of the third vector is at
the head of the second vector, and so on.

−⇀a +
−⇀
b + −⇀c +

−⇀
d =

−⇀
AB +

−⇀
BC +

−⇀
CD +

−⇀
DE

=
−⇀
AC +

−⇀
CD +

−⇀
DE

=
−⇀
AD +

−⇀
DE

=
−⇀
AE

The sum is the vector with tail at A (tail of the first vector) 
and head at E (head of the last vector).

The diagram at the right shows a rectangular box. Determine 
a vector equal to each sum.

a)
−⇀
AD +

−⇀
DH b)

−⇀
AB +

−⇀
BF +

−⇀
FG

c)
−⇀
AE +

−⇀
HC d)

−⇀
AD +

−⇀
AE +

−⇀
AB

Solution

Place the vectors sequentially and add them head-to-tail. 
Where necessary, replace a vector with an equivalent vector 
to perform the addition. 

a)
−⇀
AD +

−⇀
DH =

−⇀
AH

b)
−⇀
AB +

−⇀
BF +

−⇀
FG =

−⇀
AF +

−⇀
FG

=
−⇀
AG

A B

FE

D

H G
C

Example 2

• Does order matter when adding three or more vectors?

Something to Think About

A B

C

D

E a
+ b

c

b

d

a

a

c

+
+

b
⇀

⇀
⇀

⇀

⇀

⇀

⇀

⇀

⇀
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c)
−⇀
AE +

−⇀
HC =

−⇀
AE +

−⇀
EB

=
−⇀
AB

d)
−⇀
AD +

−⇀
AE +

−⇀
AB =

−⇀
AD +

−⇀
DH +

−⇀
HG

=
−⇀
AH +

−⇀
HG

=
−⇀
AG

In Example 2, some answers can be expressed in different ways. For example,
in part c we can write:

−⇀
AE +

−⇀
HC =

−⇀
DH +

−⇀
HC

=
−⇀
DC

This is equivalent to the vector 
−⇀
AB because 

−⇀
DC and 

−⇀
AB have the same

magnitude and the same direction.

When we add vectors sequentially by arranging them head-to-tail, it is possible
to return to the initial point. In the diagram on page 12, this situation occurs 
with 

−⇀
AB +

−⇀
BE +

−⇀
EA and 

−⇀
AB +

−⇀
BA. According to the definition of addition,

each sum is the vector with head and tail at the same point.We call this the 
zero vector, and represent it by 

−⇀
0 . Hence,

−⇀
AB +

−⇀
BE +

−⇀
EA =

−⇀
0 and −⇀

AB +
−⇀
BA =

−⇀
0 .

We define the zero vector to have zero length and no specified direction. The
sum of any vector and its opposite is the zero vector.

−⇀a + (−−⇀a ) =
−⇀
0

In many applications, two vectors act simultaneously on the same point and are
arranged tail-to-tail. In such cases, we add the vectors using an alternative to the
Triangle Law called the Parallelogram Law.

• The zero vector,
−⇀
0 , is defined to be a vector so that the sum of any two

vectors is always a vector. Hence,
−⇀
0 is different from the number 0.

Something to Think About

• When adding vectors that are arranged sequentially head-to-tail, what 
is the pattern of letters in the vectors being added and their sum?

Something to Think About
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In the diagram at the right, vectors 
−⇀
OA = −⇀a and 

−⇀
OB =

−⇀
b

have a common tail, O. To find their sum, we construct
parallelogram OACB in which OA and OB are adjacent sides. 

Hence,
−⇀
BC =

−⇀
OA = −⇀a and 

−⇀
AC =

−⇀
OB =

−⇀
b .

The sum −⇀a +
−⇀
b can be obtained by applying the Triangle

Law to �OAC. Alternatively, −⇀a +
−⇀
b can be obtained as 

the diagonal 
−⇀
OC of parallelogram OACB.

A common application of vector addition involves finding the combined effect
of two vectors. For example, when a boat is travelling in a current, the actual
velocity of the boat (its velocity relative to the shore) is the resultant of the
boat’s velocity in still water and the velocity of the current.

A boat with a forward velocity in still 
water of 14 m/s is travelling across a
river, directly towards the opposite shore.
At the same time, a current of 5 m/s
carries the boat down the river. Determine
the resultant velocity of the boat.

Solution

The diagram, above right, shows the
vectors acting on the boat. 

Draw vector-sum diagram. Draw the resultant
as the side of a triangle or as the diagonal of 
a parallelogram. Extract a triangle from the 
vector sketch, and indicate which lengths and 
angles are to be calculated.

5 m/s

14 m/s
r

14

5

θ

| r |

Example 3

Parallelogram Law of Vector Addition

Let −⇀a and 
−⇀
b be any two vectors arranged 

tail-to-tail. Complete the parallelogram 

determined by −⇀a and 
−⇀
b . The sum,

−⇀a +
−⇀
b , is the vector with the same tail 

as −⇀a and 
−⇀
b , and with its head at the 

opposite vertex of the parallelogram.

Take Note

O B

CA

a

b

⇀

⇀

a + b
⇀

⇀

a + ba

b
⇀

⇀
⇀⇀

Photo not available due
to copyright issues.
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The boat’s heading is at right angles to the current, so the velocity
parallelogram is a rectangle, and the triangles are right triangles.

Use the Pythagorean Theorem to calculate the magnitude of the resultant −⇀r .∣∣−⇀r ∣∣2 = 142 + 52∣∣−⇀r ∣∣ =
√

221∣∣−⇀r ∣∣ .= 15
Use the tangent ratio to calculate the direction of −⇀r . 

tan θ = 14
5

θ .= 70˚

The boat is travelling at 15 m/s at an angle of 70˚ relative to the shore.

1. Express each sum as a single vector (below left).

a)
−⇀
AB +

−⇀
BC b)

−⇀
AC +

−⇀
CD

c) (
−⇀
BC +

−⇀
CD) +

−⇀
DA d)

−⇀
BC + (

−⇀
CD +

−⇀
DA)

e)
−⇀
CA +

−⇀
AD +

−⇀
DB f)

−⇀
BD +

−⇀
DB

2. Express each sum as a single vector (above right). 

a)
−⇀
PT +

−⇀
TQ b)

−⇀
QR +

−⇀
RU

c)
−⇀
RV +

−⇀
VS d)

−⇀
PV +

−⇀
VS

e)
−⇀
UQ +

−⇀
QW +

−⇀
WV f)

−⇀
SW +

−⇀
WQ +

−⇀
QR

3. In the diagram (top left of the following page), ABCD and CEFG are
parallelograms. Express each sum as a single vector.

a)
−⇀
HG +

−⇀
HD b)

−⇀
HG +

−⇀
HA

c)
−⇀
FG +

−⇀
FE d)

−⇀
CD +

−⇀
HG

P

U
V

T S

Q W R

A

B
C

D

A

Exercises1.2



4. In the diagram (above right), �ABC is equilateral and D, E, F are the
midpoints of its sides. Express each sum as a single vector.

a)
−⇀
AF +

−⇀
DB b)

−⇀
DE +

−⇀
DB

c)
−⇀
FA +

−⇀
EB d)

−⇀
DA +

−⇀
EC

e)
−⇀
AF +

−⇀
DE f)

−⇀
EC +

−⇀
FD

5. Copy each pair of vectors and draw −⇀u + −⇀v .

6. Knowledge/Understanding The diagram (below left) shows a square-
based right pyramid. Determine each sum.

a)
−⇀
KN +

−⇀
NR b)

−⇀
RS +

−⇀
KR

c)
−⇀
MN +

−⇀
MS d)

−⇀
KM +

−⇀
NK

e)
−⇀
KN +

−⇀
RS f)

−⇀
KR +

−⇀
NM +

−⇀
SK

A

D

B

C

K

M R

S

N

u
u

u

u u u

v
v

v

v
v v

a) b) c)

d) e) f)
⇀⇀

⇀

⇀

⇀
⇀

⇀

⇀
⇀⇀

⇀ ⇀

B

C

DA B

EF

E

F H G

BA

D C
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7. Use the diagram at the bottom right of the previous page. Express each 
vector as the sum of two other vectors. It may be possible to do this 
in more than one way.

a)
−⇀
DA b)

−⇀
CD

c)
−⇀
CB d)

−⇀
AB

e)
−⇀
DB f)

−⇀
BC

8. Below is a property of addition in arithmetic and algebra.
Adding 0: x + 0 = x

a) Write the corresponding property of addition of vectors.

b) Use the definition of addition to prove the property in part a.

9. Copy each pair of vectors and draw −⇀u + −⇀v + −⇀w .

10. Communication When we add more than two numbers 
in arithmetic, it does not matter which ones we add first:
(x + y) + z = x + (y + z) . This property is called the 
associative law of addition. Explain how the diagram at 
the right can be used to show that vector addition is 

associative; that is, (−⇀a +
−⇀
b ) + −⇀c = −⇀a + (

−⇀
b + −⇀c ) .

11. Use a diagram to explain how each vector sum can be 
expressed as a single vector. 

a)
−⇀
WX +

−⇀
XY +

−⇀
YZ b)

−⇀
PQ +

−⇀
RP

c)
−⇀
AB +

−⇀
CA d)

−⇀
ST +

−⇀
US +

−⇀
VU

12. In any �ABC, determine the sum 
−⇀
AB +

−⇀
BC +

−⇀
CA.

13. Thinking/Inquiry/Problem Solving ABCDE is a 
regular pentagon.

a) Determine the sum 
−⇀
AC +

−⇀
CE +

−⇀
EB +

−⇀
BD +

−⇀
DA.

b) Suppose the vectors in part a were 
all drawn tail-to-tail. What pattern 
would they form? Explain.

A

B

CD

E

n
c

p

a

m

b

⇀
⇀

⇀

⇀

⇀

⇀

u

u
v

v
w

w

a) b)

⇀

⇀
⇀

⇀

⇀

⇀



14. Application In his rowboat, Pierre heads directly across 
a river at a speed of 10 km/h. The river is flowing at 6 km/h.

a) What is the resultant speed of the boat?

b) What angle will the resultant path of the boat make with the shoreline?

c) If the river is 120 m wide, how far downstream will Pierre land on the
opposite shore?

15. Refer to exercise 14. Suppose Pierre wants to row directly across the river. 

a) At what angle relative to the shore should he head?

b) How long will this trip take?

16. Refer to the diagram in exercise 6. Express each sum as a single vector.

a)
−⇀
KR +

−⇀
NM +

−⇀
MK b)

−⇀
KS +

−⇀
RN +

−⇀
RK

17. Two forces with magnitudes 8 N and 11 N act on a large object. The angle
between the forces is 30˚.

a) Draw a diagram to represent the combined effect of the forces.

b) Calculate the magnitude of the resultant force.

18. a) For any vectors −⇀a and 
−⇀
b , can 

∣∣−⇀a +
−⇀
b

∣∣ =
∣∣−⇀a ∣∣ +

∣∣−⇀b ∣∣? 
Use a diagram to explain.

b) Prove that for any vectors −⇀a and 
−⇀
b ,

∣∣−⇀a +
−⇀
b

∣∣ ≤
∣∣−⇀a ∣∣ +

∣∣−⇀b ∣∣.
c) Is it possible to have 

∣∣−⇀a +
−⇀
b

∣∣ >
∣∣−⇀a ∣∣ +

∣∣−⇀b ∣∣? Use a diagram to explain.

C
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In arithmetic, subtraction is defined as the inverse operation of addition. For example,
5 − 3 equals 2 because 2 is the number that must be added to 3 to obtain 5.

We define subtraction of vectors in the same way. Let −⇀a =
−⇀
OA and 

−⇀
b =

−⇀
OB

be two vectors drawn tail-to-tail. We define −⇀a −
−⇀
b to be the vector that must 

be added to 
−⇀
b to obtain −⇀a . This is the vector 

−⇀
BA that goes from the head of −⇀

b to the head of −⇀a .
−⇀a −

−⇀
b =

−⇀
BA ➀

The Triangle Law shows that this is reasonable. If we start at O and go to B and

then go to A, the result is 
−⇀
b + −⇀a −

−⇀
b = −⇀a .

We can use the Triangle Law in a different way to find another expression for 
−⇀
BA.

−⇀
BA =

−⇀
BO +

−⇀
OA

−⇀
BA = −

−⇀
b + −⇀a

−⇀
BA = −⇀a + (−

−⇀
b ) ➁

Compare equations ➀ and ➁ :
−⇀a −

−⇀
b = −⇀a + (−

−⇀
b )

This equation tells us that we can subtract a vector by adding its opposite. 
The diagram below shows two ways to do this.

B

O A

B

a

b
a − b⇀

⇀⇀

⇀O A

B

a

b

⇀

⇀

Subtracting Vectors1.3
Using the Parallelogram Law: Using the Triangle Law:
−⇀a −

−⇀
b = −⇀a + (−

−⇀
b )

=
−⇀
OA +

−⇀
OC

=
−⇀
OD

−⇀a −
−⇀
b = −⇀a + (−

−⇀
b )

=
−⇀
OA +

−⇀
AD

=
−⇀
OD

O A

DC

a

b

a
−

b
− b − b

⇀ ⇀

⇀

⇀

⇀

⇀

1.3 SUBTRACTING VECTORS 19
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Observe that the result is equivalent to the one shown in equation ➀ because 
the vectors 

−⇀
OD and 

−⇀
BA are equal.

A special case of subtraction occurs when the two vectors are equal. According to
the definition of subtraction, −⇀a − −⇀a is the vector from the head of −⇀a to the head
of −⇀a . This is the zero vector, and we write −⇀a − −⇀a =

−⇀
0 . 

Given the vectors −⇀u and −⇀v , draw the vector −⇀u − −⇀v .

a) b)

Solution

a) −⇀u − −⇀v is the vector from the head of −⇀v to the head of −⇀u .

b) Method 1

Arrange the vectors tail-to-tail by translating −⇀v so that it has the same tail
as −⇀u . Then −⇀u − −⇀v is the vector from the head of −⇀v to the head of −⇀u .

u
v

vu − ⇀⇀

⇀
⇀

v⇀

u v

vu −

⇀
⇀

⇀ ⇀

u

v⇀

⇀
u

v
⇀

⇀

Example 1

Vector Subtraction
Let −⇀a and 

−⇀
b be any two vectors. Either of the two methods shown 

below can be used to determine −⇀a −
−⇀
b .

Identify head and tail
Arrange −⇀a and 

−⇀
b tail-to-tail. 

Then−⇀a −
−⇀
b is the vector from 

the head of 
−⇀
b to the head of −⇀a .

Add the opposite
−⇀a −

−⇀
b is the sum of −⇀a and the opposite of 

−⇀
b .

−⇀a −
−⇀
b = −⇀a + (−

−⇀
b )

Take Note

a

b
a − b⇀

⇀

⇀ ⇀



Method 2

Add the opposite of −⇀v to −⇀u . Use the Triangle Law.

ABCD is a square. Express each difference as a single vector.

a)
−⇀
BC −

−⇀
BA b)

−⇀
AC −

−⇀
BC

Solution

a)
−⇀
BC and 

−⇀
BA have the same tail, B.

−⇀
BC −

−⇀
BA is the vector from the head of 

−⇀
BA to the head 

of 
−⇀
BC; that is, from A to C.

−⇀
BC −

−⇀
BA =

−⇀
AC

b)
−⇀
AC and 

−⇀
BC do not have the same tail.

Since 
−⇀
BC =

−⇀
AD, we may replace 

−⇀
BC with 

−⇀
AD.

−⇀
AC −

−⇀
BC =

−⇀
AC −

−⇀
AD

−⇀
AC −

−⇀
BC =

−⇀
DC

The difference in Example 2b can be determined in a different way. Instead 
of subtracting 

−⇀
BC, we can add its opposite,

−⇀
CB.

−⇀
AC −

−⇀
BC =

−⇀
AC +

−⇀
CB

−⇀
AC −

−⇀
BC =

−⇀
AB

Since 
−⇀
AB =

−⇀
DC, the two results are equivalent.

A B

CD

Example 2

• What other way is there to apply each method in part b?

Something to Think About

−v⇀u

vu − ⇀⇀

⇀

v⇀
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1. The diagram (below left) shows three congruent equilateral triangles.
Express each difference as a single vector.

a)
−⇀
BA −

−⇀
BC b)

−⇀
BA −

−⇀
BD

c)
−⇀
CE −

−⇀
AE d)

−⇀
AE −

−⇀
ED

2. The diagram (above right) contains two squares. Express each difference as
a single vector.

a)
−⇀
SQ −

−⇀
ST b)

−⇀
QT −

−⇀
QP

c)
−⇀
PR −

−⇀
QS d)

−⇀
PT −

−⇀
TS

3. a) Explain why −⇀a −
−⇀
b is the vector from the head of 

−⇀
b to the head of −⇀a .

b) How could you use subtraction to represent the vector from the head of 
−⇀a to the head of 

−⇀
b ?

4. Knowledge/Understanding Copy each pair of vectors and draw −⇀u − −⇀v .

5. In parallelogram ABCD (top left of the following page),
−⇀
AB = −⇀u and 

−⇀
BC = −⇀v .

a) State a single vector equal to each of the following.
i) −⇀u + −⇀v ii) −⇀u − −⇀v

iii) −−⇀u − −⇀v iv) −⇀v − −⇀u
b) Express 

−⇀
AC in terms of −⇀u and −⇀v in two ways. What property of vector

addition is illustrated?

u
u

u

u u u

v
v

v

v
v v

a) b) c)

d) e) f)

⇀⇀

⇀

⇀

⇀

⇀

⇀

⇀

⇀ ⇀

⇀

⇀

B

U T S

RQP

A

B C D

E

A

Exercises1.3
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6. PQRS is a rectangle, above right. Express each vector as the difference of 
two other vectors. It may be possible to do this in more than one way.

a)
−⇀
TQ b)

−⇀
RT

c)
−⇀
PS d)

−⇀
PR

7. Thinking/Inquiry/Problem Solving ABCDEF is a regular hexagon. 

Determine 
−⇀
AB −

−⇀
BC +

−⇀
CD −

−⇀
DE +

−⇀
EF −

−⇀
FA

8. Application The diagram (above right) shows a cube, where 
−⇀
AB = −⇀u ,−⇀

AD = −⇀v , and 
−⇀
AE = −⇀w . Determine a single vector equivalent to each of 

the following.

a) −⇀u + −⇀v + −⇀w b) −⇀u + −⇀v − −⇀w
c) −⇀u − −⇀v + −⇀w d) −⇀u − −⇀v − −⇀w

9. Decide whether each statement is true or false. Draw diagrams to support
your answers.

a) −⇀a +
−⇀
b and −⇀a −

−⇀
b always have the same length.

b) −⇀a +
−⇀
b is always longer than −⇀a −

−⇀
b .

10. Communication Suppose you have a diagram of any two vectors −⇀u
and −⇀v drawn tail-to-tail. Explain how you can tell, just by looking at the 
diagram, whether 

∣∣−⇀u + −⇀v ∣∣ is greater than, equal to, or less than 
∣∣−⇀u − −⇀v ∣∣ .

11. a) Prove that for any vectors −⇀a and 
−⇀
b ,

∣∣−⇀a −
−⇀
b

∣∣ ≤
∣∣−⇀a ∣∣ +

∣∣−⇀b ∣∣.
b) Is it possible to have any or all of the following? Use diagrams to explain.

i)
∣∣−⇀a −

−⇀
b

∣∣ ≤
∣∣−⇀a ∣∣ −

∣∣−⇀b ∣∣ ii)
∣∣−⇀a −

−⇀
b

∣∣ ≥
∣∣−⇀a ∣∣ −

∣∣−⇀b ∣∣
iii)

∣∣−⇀a −
−⇀
b

∣∣ ≤
∣∣−⇀b ∣∣ −

∣∣−⇀a ∣∣ iv)
∣∣−⇀a −

−⇀
b

∣∣ ≥
∣∣−⇀b ∣∣ −

∣∣−⇀a ∣∣

C

E
F

A
D

H

G

CB
u

v

w⇀

⇀

⇀

E D

C

BA

F

T

P

S R

Q

A

B C

D

u

v

⇀

⇀



In arithmetic, multiplication is defined as repeated addition. For example,
2 + 2 + 2 = 3 × 2. In this Investigation, you will explore a similar concept 
with vectors. Remember that the magnitude of a vector is always a 
non-negative scalar.

1. Draw any vector −⇀a , with 
∣∣−⇀a ∣∣ = 3 cm.

2. a) Draw the vector −⇀u = −⇀a + −⇀a ; this is represented as −⇀u = 2−⇀a .

b) How do the magnitude and direction of −⇀u compare with the
magnitude and direction of −⇀a ?

3. a) Draw the vector −⇀v = −⇀a + −⇀a + −⇀a + −⇀a + −⇀a ; this is represented
as −⇀v = 5−⇀a .

b) How do the magnitude and direction of −⇀v compare with the
magnitude and direction of −⇀a ?

4. a) Draw the vector −⇀w = −−⇀a .

b) What is the magnitude of −⇀w ? What is the direction of −⇀w ?

5. a) Draw the vector −⇀z = −−⇀a − −⇀a − −⇀a ; this is represented as−⇀z = −3−⇀a .

b) What is the magnitude of −⇀z ? What is the direction of −⇀z ?

6. How are the vectors −⇀a , −⇀u , −⇀v , −⇀w , and −⇀z related geometrically?

Investigation

Scalar Multiples of Vectors

Multiplying a Vector by a Scalar1.4
The operation of multiplying a vector by a scalar is called scalar multiplication.

Scalar Multiplication
Let −⇀v be any vector and let k be a scalar. Then k−⇀v is a vector that is 
|k| times as long as −⇀v .

• If k > 0, k−⇀v has the same direction as −⇀v .

• If k < 0, k−⇀v is opposite in direction to −⇀v .

• If k = 0, k−⇀v is the zero vector.

Take Note
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Scalar multiplication has some properties that are similar to properties in arithmetic

and algebra. For example, if −⇀a and 
−⇀
b are vectors and m is a scalar, then:

m(−⇀a +
−⇀
b ) = m−⇀a + m

−⇀
b

We say that scalar multiplication is distributive over vector addition.

Proof that m(−⇀a + −⇀
b ) = m−⇀a + m

−⇀
b

Consider the diagram below in which �DOC is similar to �BOA and has sides
m times as long (m > 0).

Suppose 
−⇀
OA = −⇀a and 

−⇀
AB =

−⇀
b .

Since OD is m times as long as OB: Using the Triangle Law:
−⇀
OD = m

−⇀
OB

= m(−⇀a +
−⇀
b )

−⇀
OD =

−⇀
OC +

−⇀
CD

= m−⇀a + −⇀m b

Therefore, m(−⇀a +
−⇀
b ) = m−⇀a + m

−⇀
b , when m > 0. To complete the proof, this

property must also be proved for the case m ≤ 0. You will do this in exercise 20.
See exercises 18 and 19 for other properties of scalar multiplication.

When one vector is a scalar multiple of another vector, we say that these 
vectors are collinear. For example, on the diagram above,

−⇀
OA and 

−⇀
OC are

collinear. Vectors 
−⇀
AB and 

−⇀
CD are also collinear. Observe that if these vectors

are drawn tail-to-tail, their heads and tails lie on a line, just as do the heads and
tails of vectors 

−⇀
OA and 

−⇀
OC.

In rectangle ABCD, X and Y are the midpoints of AB and AD

respectively. If 
−⇀
AX = −⇀a and 

−⇀
AY =

−⇀
b , express each vector in 

terms of −⇀a and/or 
−⇀
b .

a)
−⇀
AB b)

−⇀
DA c)

−⇀
XY

d)
−⇀
YC e)

−⇀
XC f)

−⇀
BD

A

Y

BX

CD

a

b

⇀

⇀

Example 1

O A
C

D

B

a + b

a

b

m a

m b

⇀ ⇀

⇀

⇀

⇀

⇀



Solution

a)
−⇀
AB = 2

−⇀
AX

= 2−⇀a
b)

−⇀
DA = −2

−⇀
AY

= −2
−⇀
b

c)
−⇀
XY =

−⇀
XA +

−⇀
AY

= −−⇀a +
−⇀
b

d)
−⇀
YC =

−⇀
YD +

−⇀
DC

=
−⇀
b + 2−⇀a

e)
−⇀
XC =

−⇀
XY +

−⇀
YC

= −−⇀a +
−⇀
b +

−⇀
b + 2−⇀a

= −⇀a + 2
−⇀
b

f)
−⇀
BD =

−⇀
BA +

−⇀
AD

= −2−⇀a + 2
−⇀
b

Scalar multiplication of vectors is often combined with addition
and subtraction. For example, the diagram shows vectors
−⇀a =

−⇀
OA and 

−⇀
b =

−⇀
OB drawn tail-to-tail. Points M and N 

are located such that 3−⇀a =
−⇀
OM and 2

−⇀
b =

−⇀
ON. Vectors 

−⇀
OM

and 
−⇀
ON form two adjacent sides of a parallelogram. The

remaining vertex of the parallelogram is C. According to the  
Parallelogram Law,

3−⇀a + 2
−⇀
b =

−⇀
OM +

−⇀
ON

3−⇀a + 2
−⇀
b =

−⇀
OC

To get from O to C, we go in the direction of 
−⇀
OA and 3 times its length to M. 

Then we go in the direction of 
−⇀
OB and 2 times its length to C. If we replace the

numbers 3 and 2 in 3−⇀a + 2
−⇀
b with other numbers, we proceed in a similar 

way (if either number is negative, we go in the opposite direction). Doing this is
similar to plotting points on a grid.

In the diagram on the following page, vectors −⇀a and 
−⇀
b define a grid of 

parallelograms. We can use the grid to express any vector in terms of −⇀a and 
−⇀
b . 

For example:
−⇀
OC = 3−⇀a + 2

−⇀
b

−⇀
OD = −−⇀a + 4

−⇀
b

−⇀
OE = −1.5−⇀a − 2

−⇀
b

−⇀
OF = 5−⇀a − 3

−⇀
b

O A

B
M

C
N

2 b
⇀

a⇀

3 a
+ 2 b⇀

⇀

3 a⇀

b
⇀

• In this solution, where are we using the fact that scalar multiplication is
distributive over vector addition?

Something to Think About
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These expressions are called linear combinations of −⇀a and 
−⇀
b . A linear 

combination of −⇀a and 
−⇀
b has the form s−⇀a + t

−⇀
b , where s and t are scalars.

Since we can use any real numbers for s and t, these linear combinations
include all vectors in the plane of the diagram. This is true as long as −⇀a and −⇀
b are not collinear.

We can express any vector in the plane of the diagram as a linear combination 
of −⇀a and 

−⇀
b . For example:

−⇀
DC =

−⇀
OC −

−⇀
OD

= (3−⇀a + 2
−⇀
b ) − (−−⇀a + 4

−⇀
b )

= 4−⇀a − 2
−⇀
b

To verify this result, we start at D and go in the direction of −⇀a and 4 times its 
length to P. Then we go in the opposite direction of 

−⇀
b and 2 times its length to C.

Any vector −⇀c in the plane can be expressed in only one way as a linear 

combination of two non-collinear vectors −⇀a and
−⇀
b in the plane. That is,

−⇀c = s−⇀a + t
−⇀
b for unique scalars s and t. This is a fundamental property of

vectors.

Proof that −⇀c = s−⇀a + t
−⇀
b

Draw 
−⇀
OA = −⇀a ,

−⇀
OB =

−⇀
b , and 

−⇀
OC = −⇀c .

Construct the parallelogram OA′CB′ with OC as its diagonal, where OA′
contains OA and OB′ contains OB. Then, from the definition of a scalar 

multiple,
−⇀
OA′ = s

−⇀
OA and 

−⇀
OB′ = t

−⇀
OB for unique numbers s and t. So,

−⇀c = s −⇀a + t
−⇀
b for unique numbers s and t.

D

E

O

F

C

P

B

A
b
⇀

a⇀
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Draw any two non-collinear vectors −⇀u and −⇀v . Then draw each vector 
on the same diagram.

a) −⇀w = 2−⇀u + 4−⇀v b) −⇀z = −3−⇀u − −⇀v

Solution

a) Draw −⇀u and −⇀v with a common tail, O.
Draw the line l containing −⇀u .
Locate point P on l such that 

−⇀
OP = 2−⇀u . Through P, draw a line parallel 

to −⇀v . Locate point Q on this line such that 
−⇀
PQ = 4−⇀v . Then −⇀w =

−⇀
OQ.

b) Locate point R on l such that 
−⇀
OR = −3−⇀u . Through R, draw a line parallel 

to −⇀v . Locate point S on this line such that 
−⇀
RS = −−⇀v . Then −⇀z =

−⇀
OS.

• Suppose −⇀u and −⇀v were collinear. Could the linear combinations still
be formed? How would the diagram be affected?

Something to Think About

R

S

P
l

Q

O
−3 u − v

⇀ ⇀

v⇀

u⇀

2 u + 4 v⇀
⇀

Example 2

Linear Combinations of Vectors
If −⇀a and 

−⇀
b are non-zero,

non-collinear vectors, then 
any vector 

−⇀
OP in the plane 

containing −⇀a and
−⇀
b can 

be expressed as a linear 
combination of −⇀a and 

−⇀
b .

Take Note

a

b
s a

t

O

P

b

⇀

⇀

s a
+ t b

⇀

⇀

⇀

⇀
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The triangles DOC, OCA, and CAB in the diagram  

are equilateral; 
−⇀
OA = −⇀u , and 

−⇀
OD = −⇀v . Express each

vector as a linear combination of −⇀u and −⇀v .

a)
−⇀
OC b)

−⇀
AB

c)
−⇀
OB d)

−⇀
AD

Solution

a)
−⇀
OC =

−⇀
OA +

−⇀
OD

= −⇀u + −⇀v
b)

−⇀
AB =

−⇀
OC

= −⇀u + −⇀v

c)
−⇀
OB =

−⇀
OA +

−⇀
AB

= −⇀u + −⇀u + −⇀v
= 2−⇀u + −⇀v

d)
−⇀
AD =

−⇀
AO +

−⇀
OD

= −−⇀u + −⇀v

Observe that parts of Example 3 can be done in different ways. For example, in
part c we could write:

−⇀
OB =

−⇀
OD +

−⇀
DB

= −⇀v + 2−⇀u
= 2−⇀u + −⇀v

1. A car is travelling northeast at 85 km/h. Draw a scale diagram of its velocity.
The car increases its speed by a factor of 1.5. Draw the new velocity vector.

2. In the diagram at the right, segments OU and AD are parallel. 
Express each vector as a scalar multiple of −⇀u .

a)
−⇀
AB b)

−⇀
AC c)

−⇀
AD d)

−⇀
BC

e)
−⇀
BD f)

−⇀
BA g)

−⇀
CA h)

−⇀
DA

3. Suppose 
−⇀
XZ = 3

−⇀
XY. Draw diagrams to support your answers to each

question.

a) What conclusions can you draw about line segments XZ and XY?

b) What conclusions can you draw about points X, Y, and Z? 

4. Refer to the answers in Example 1c and 1f. What conclusions can you draw
about line segments XY and BD?

O

U

A

B

C

D
u⇀

A

Exercises1.4

O A

CD B

v⇀

u⇀

Example 3
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5. In rectangle ABCD (below left), E is the midpoint of AB,
−⇀
AE = −⇀u , and−⇀

AD = −⇀v . Express each vector in terms of −⇀u and/or −⇀v .

a)
−⇀
AB b)

−⇀
AC c)

−⇀
CE

6. Use the diagram above right. Express each vector in terms of 
−⇀
OP and 

−⇀
OQ.

a)
−⇀
OR b)

−⇀
OU c)

−⇀
OW

d)
−⇀
OS e)

−⇀
OA f)

−⇀
OY

7. Use the diagram on page 27.

a) Determine whether or not 
−⇀
DC and 

−⇀
OF are parallel.

b) Express each vector as a linear combination of −⇀a and 
−⇀
b .

i)
−⇀
DE ii)

−⇀
EF iii)

−⇀
DF

8. Knowledge/Understanding Use the diagram below.

a) Express each vector as a linear combination of −⇀a and 
−⇀
b .

i)
−⇀
OC ii)

−⇀
OD iii)

−⇀
OE iv)

−⇀
OF

b) Use the results of part a to express each vector as a linear combination of−⇀a and 
−⇀
b . Use the diagram to verify your results.

i)
−⇀
CD ii)

−⇀
DE iii)

−⇀
EF iv)

−⇀
FC

v)
−⇀
DF vi)

−⇀
EC

D

E

B

O
A

C

F

b

a

⇀

⇀

O Q

P R

A X W V

Z Y

S T U

A

D

E B

C

u

v⇀

⇀

B



9. Draw a diagram like the one at the right. Then draw 
each of the following on your diagram.

a) 3−⇀u b) −1
4
−⇀v c) 2−⇀u − 3−⇀v

d) −2−⇀u + 3−⇀v e) 1.5−⇀u + 0.5−⇀v f) −−⇀u + 2−⇀v
10. Draw any two non-collinear vectors −⇀u and −⇀v tail-to-tail. Then draw 

each of the following on the same diagram.

a) 3−⇀u + 4−⇀v b) −5−⇀u + 2−⇀v c) 2−⇀u − 3−⇀v
11. Communication Draw any two non-collinear vectors −⇀a and 

−⇀
b tail-to-tail.

a) Draw each linear combination on the same diagram.

i) −2−⇀a + 3
−⇀
b ii) −−⇀a + 2

−⇀
b iii) 0−⇀a +

−⇀
b

iv) −⇀a + 0
−⇀
b v) 2−⇀a −

−⇀
b vi) 3−⇀a − 2

−⇀
b

b) Describe the pattern formed by vectors −⇀a ,
−⇀
b , and all the vectors in part a.

12. Application ABCD is a square. The midpoints of BC and CD
are M and N respectively.

a) Express 
−⇀
AM and 

−⇀
AN as linear combinations of 

−⇀
AB and 

−⇀
AD.

b) Express 
−⇀
AB and 

−⇀
AD as linear combinations of 

−⇀
AM and 

−⇀
AN.

13. In the diagram (below left), A and D are the midpoints of 
opposite sides of parallelogram OBCE,

−⇀
OA = −⇀u , and 

−⇀
OE = −⇀v . 

Express each vector as a linear combination of −⇀u and −⇀v .

a)
−⇀
OD b)

−⇀
OC c)

−⇀
AC d)

−⇀
EB

14. The diagram (above right) shows a square and two isosceles right triangles.

Also,
−⇀
OA = −⇀u and 

−⇀
OE = −⇀v . Express each vector as a linear combination 

of −⇀u and −⇀v .

a)
−⇀
OD b)

−⇀
OC c)

−⇀
OB d)

−⇀
AD

E D C B

AO u

v⇀

⇀O

E D C

A Bu

v⇀

⇀

A B

CD N

M

u

v

⇀

⇀
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15. OABCDE is a regular hexagon with centre F. Also,
−⇀
OA = −⇀u

and 
−⇀
OE = −⇀v . Express the vectors in each list as linear

combinations of −⇀u and/or −⇀v .

a)
−⇀
OA,

−⇀
AB,

−⇀
BC,

−⇀
CD,

−⇀
DE,

−⇀
EO

b)
−⇀
OB,

−⇀
AC,

−⇀
BD,

−⇀
CE,

−⇀
DO,

−⇀
EA

16. Complete parts a and b for each list in exercise 15.

a) Draw a diagram of the vectors drawn tail-to-tail.

b) Describe the pattern formed by the heads of the vectors. 
Explain the pattern.

17. Thinking/Inquiry/Problem Solving In the diagram below, the points
marked on each line are equally spaced.

a) Express each coloured vector as a linear combination of −⇀u and −⇀v .

b) Draw a diagram showing these vectors with a common tail. Describe the
pattern formed by the heads of the vectors.

c) Explain the pattern.

18. Two properties of multiplication in arithmetic and algebra are:
Multiplying by 0: 0x = 0
Multiplying by 1: 1x = x

a) Write the corresponding properties of scalar multiplication of vectors.

b) Use the definition of scalar multiplication to prove the properties in part a.

19. Use the definition of scalar multiplication to show that each property is true
for positive scalars m and n.

a) (m + n)−⇀a = m−⇀a + n−⇀a
b) m(n−⇀a ) = (mn)−⇀a

u

v⇀

⇀

R

Q

P

O

N

M

L

A B C D E F G

u

v

O A

F BE

D C

⇀

⇀
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20. On page 25, we used the definition of scalar multiplication to prove that
m(−⇀a +

−⇀
b ) = m−⇀a + m

−⇀
b when m > 0. Prove this property when m ≤ 0.

21. Refer to exercise 9. Suppose that 
∣∣−⇀u ∣∣ = 1,

∣∣−⇀v ∣∣ = 1, and that the angle
between −⇀u and −⇀v is 120˚. Determine the magnitude of each resultant
vector in exercise 9.

22. Let −⇀u = s−⇀a + t
−⇀
b and −⇀v = m−⇀a + n

−⇀
b , where −⇀a and 

−⇀
b are any two

non-collinear vectors. If −⇀u and −⇀v are collinear, show that s : m = t : n.

C
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Hypatia 
(c. 370–415)
Born:
Alexandria,
Egypt  

Hypatia of Alexandria was the
daughter of a scholar and
mathematician. She studied
astronomy, astrology, and
mathematics, and lectured on
mathematics and philosophy at the
Platonist school in Alexandria
around 400 A.D.
With her father, Hypatia wrote
commentaries on the major
mathematical works of the time,
including those of Ptolemy, Euclid,
Diophantus, and Apollonius. She is
considered an excellent preserver of
early mathematical work.
Despite her early demise,
philosophers considered Hypatia a
woman of great knowledge and a
profound orator.
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In previous sections, we represented vectors geometrically as directed line
segments. If we draw vectors on a coordinate grid, we can represent them as
ordered pairs.

Five vectors are shown on the diagram at the right. They are  
all equal because they have the same magnitude and the same
direction. Starting at the tail, the head of each vector is reached by
moving 3 right and 2 up. We represent all of these vectors by the
same ordered pair, [3, 2]. The square brackets distinguish ordered
pairs that represent vectors from ordered pairs that represent points.

We say that [3, 2] is a Cartesian vector because it can be plotted on a grid.
The numbers 3 and 2 are called components of the vector [3, 2]. Observe 
that the five vectors shown are equal because their corresponding
components are equal.

Each vector [3, 2] whose tail is not at the origin can be translated to the
vector 

−⇀
OP whose tail is at the origin. We call 

−⇀
OP the position vector for 

[3, 2]. The head of the position vector 
−⇀
OP = [3, 2] is the point P(3, 2). In

general, the components of a position vector are the coordinates of its head.

Operations on Cartesian Vectors
We often graph Cartesian vectors with tails at the origin.
The diagram at the right shows vectors −⇀u = [4, 1] and −⇀v = [2, 3].
To add and subtract these vectors, or to calculate a scalar multiple,
we apply the methods developed in earlier sections.

y

xu

v

2 u⇀
u

+ v⇀
⇀

⇀

⇀

4

40

We often omit the
word “Cartesian”
because the ordered
pair and the square
brackets indicate
that this vector is
on a grid.

[3, 2]

[3, 2]

[3, 2]

[3, 2]

y
6

−2

2 P

B

A

x
−4 −2 20 4 6

Cartesian Vectors1.5
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Addition

If we add −⇀u and −⇀v using the Triangle or Parallelogram Laws, we
obtain −⇀u + −⇀v = [6, 4]. We can obtain the same result by adding 
the corresponding components of −⇀u and −⇀v .

−⇀u + −⇀v = [4, 1] + [2, 3]
= [4 + 2, 1 + 3]
= [6, 4]

Subtraction

By the definition of subtraction, −⇀u − −⇀v is the vector from the head of −⇀v to
the head of −⇀u when they are drawn tail-to-tail. The result is the vector [2, −2].

u − v⇀ ⇀
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Hence, −⇀u − −⇀v = [2, −2]. We can obtain the same result by subtracting  
the corresponding components of −⇀u and −⇀v .

−⇀u − −⇀v = [4, 1] − [2, 3]
= [4 − 2, 1 − 3]
= [2, −2]

Scalar Multiplication

By the definition of scalar multiplication, 2−⇀u has the same direction as −⇀u and
is twice as long. Hence, 2−⇀u = [8, 2]. We can obtain this result by multiplying
the components of −⇀u by 2. 

2−⇀u = 2[4, 1]
= [2 × 4, 2 × 1]
= [8, 2]

By applying the same methods to the general vectors −⇀u = [x1, y1] and−⇀v = [x2, y2], we obtain the following results.

Given −⇀u = [3, −1] and −⇀v = [1, 2], determine:

a) −⇀u + −⇀v b) −⇀u − −⇀v c) 3−⇀u + 2−⇀v

Solution

a) −⇀u + −⇀v = [3, −1] + [1, 2]
= [3 + 1, −1 + 2]
= [4, 1]

b) −⇀u − −⇀v = [3, −1] − [1, 2]
= [3 − 1, −1 − 2]
= [2, −3]

c) 3−⇀u + 2−⇀v = 3[3, −1] + 2[1, 2]
= [9, −3] + [2, 4]
= [11, 1]

Example 1

Operations on Cartesian Vectors
If −⇀u = [x1, y1] and −⇀v = [x2, y2], then:

−⇀u + −⇀v = [x1 + x2, y1 + y2]
−⇀u − −⇀v = [x1 − x2, y1 − y2]

k−⇀u = [kx1, ky1]

Take Note
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Components may be used to prove the distributive properties of scalar
multiplication you saw in the previous section.

For example: (m + n)−⇀a = m−⇀a + n−⇀a
Proof that (m + n)−⇀a = m−⇀a + n−⇀a
Suppose −⇀a = [a1, a2] .

For any scalars m and n,

(m + n)−⇀a = (m + n)[a1, a2]
= [(m + n)a1, (m + n)a2]
= [ma1 + na1, ma2 + na2]
= [ma1, ma2] + [na1, na2]

= m−⇀a + n−⇀a

Segment PQ has endpoints P(−2, 3) and Q(4, 1).

a) Find the components of the vector 
−⇀
PQ.

b) Graph both 
−⇀
PQ and its corresponding position vector.

c) Determine 
∣∣−⇀PQ

∣∣ .

Solution

a) Plot the points P and Q.
Q is 6 units to the right of P and 2 down.
Thus,

−⇀
PQ = [6, −2].

b) Name the corresponding position vector −⇀u . 
Draw −⇀u with its tail at the origin and its head at (6, −2).−⇀u = [6, −2] is the corresponding position vector.

c) Use the Pythagorean Theorem.∣∣−⇀PQ
∣∣ =

√
62 + (−2)2∣∣−⇀PQ

∣∣ =
√

40

= 2
√

10

In Example 2, we can determine 
−⇀
PQ by subtracting the coordinates of P

from the corresponding coordinates of Q.−⇀
PQ = [4 − (−2), 1 − 3]

= [6, −2]

This result can be generalized.

If A(x1, y1) and B(x2, y2) are any two points,
−⇀
AB = [x2 − x1, y2 − y1] .

Radical

Student Reference

P(−2, 3)

Q(4, 1)

[6, −2]

y

2

−2

x
−4 −2 20 4 6

u⇀

Example 2
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Proof that 
−⇀
AB = [x2 − x1, y2 − y1]

−⇀
AB =

−⇀
OB −

−⇀
OA

= [x2, y2] − [x1, y1]
= [x2 − x1, y2 − y1]

The results of Example 1 are illustrated in the diagram below left. The heads 
of −⇀u and −⇀v are the points (3, −1) and (1, 2) respectively. Observe that:

• The head of −⇀u + −⇀v is the point (4, 1).
• The head of −⇀u − −⇀v is the point (2, −3).
• The head of 3−⇀u + 2−⇀v is the point (11, 1).

In Example 1c, the given expression 3−⇀u + 2−⇀v is a linear combination of −⇀u
and −⇀v . Hence, the answer [11, 1] is a linear combination of [3, −1] and [1, 2]:

[11, 1] = 3[3, −1] + 2[1, 2]

Recall from Section 1.4 that any vector can be expressed as a linear
combination of two non-collinear vectors. Therefore, if we are given two such
vectors we should be able to express any other vector as a linear combination of
them. This is illustrated above right, and in the next example.

u

v

y

O
x

u − v⇀ ⇀

⇀

⇀

u + v⇀
⇀

3 u + 2 v⇀ ⇀

4

−4

y

x
0 4 8

u

v

⇀

⇀

u + v⇀
⇀

3 u + 2 v⇀ ⇀

u − v⇀ ⇀

The Vector with Given Head and Tail
If A(x1, y1) and B(x2, y2) are any two points,

the components of the vector 
−⇀
AB are found 

by subtracting the coordinates of its tail, A,
from those of its head, B.
−⇀
AB = [x2 − x1, y2 − y1]

To determine the magnitude of this vector, use the Pythagorean Theorem.∣∣−⇀AB
∣∣ =

√
(x2 − x1)2 + (y2 − y1)2

Take Note

y

xA(x1, y1)

B(x2, y2)
AB⇀

0
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Given the vectors −⇀u = [3, −1] and −⇀v = [1, 2]:

a) Express the vector −⇀w = [−3, 8] as a linear combination of −⇀u and −⇀v .

b) Illustrate the result in part a on a diagram.

Solution

a) Let −⇀w = s−⇀u + t−⇀v for some real numbers s and t.
[−3, 8] = s[3, −1] + t[1, 2]
[−3, 8] = [3s, −s] + [t, 2t]
[−3, 8] = [3s + t, −s + 2t]

Since these vectors are equal, their components are equal.
3s + t = −3

−s + 2t = 8
➀
➁

Solve the linear system formed by ➀ and ➁ .

Copy ➀ : 3s + t = −3
− 3s + 6t = 24

7t = 21
t = 3

➁ × 3:
Add:

Substitute t = 3 in ➀ :
3s + 3 = −3

3s = −6
s = −2

Therefore, −⇀w = −2−⇀u + 3−⇀v .

b) Vectors −⇀u and −⇀v define a grid of parallelograms. On this grid,−⇀w = −2−⇀u + 3−⇀v , or [−3, 8] = −2[3, −1] + 3[1, 2]

u

v

3 v

−2 u

−2 u + 3 v

y

x

⇀⇀

⇀

⇀

⇀

⇀

0

Example 3



1.5 CARTESIAN VECTORS 39

Alternate Representation of Cartesian Vectors
Another way to represent Cartesian vectors is based on linear combinations. In
the diagram,

−⇀
i and 

−⇀
j are vectors with length 1 with tails at the origin and

heads at (1, 0) and (0, 1) respectively.

A vector with length 1 is called a unit vector.

Any Cartesian vector can be represented as a linear combination of these unit
vectors,

−⇀
i and 

−⇀
j , along the coordinate axes.

We can write the vector 
−⇀
OP = [5, 3] as a linear combination of 

−⇀
i and 

−⇀
j .

−⇀
OP =

−⇀
OM +

−⇀
MP

−⇀
OP = 5

−⇀
i + 3

−⇀
j

Writing 
−⇀
OP = 5

−⇀
i + 3

−⇀
j and 

−⇀
OP = [5, 3] are equivalent ways to express 

−⇀
OP

in terms of its components.

All operations in Examples 1 and 3 can be done using vectors written as linear

combinations of 
−⇀
i and 

−⇀
j instead of as ordered pairs. For example, if 

−⇀u = 3
−⇀
i − −⇀

j and −⇀v = −⇀
i + 2

−⇀
j , then:

3−⇀u + 2−⇀v = 3(3
−⇀
i − −⇀

j ) + 2(
−⇀
i + 2

−⇀
j )

= 9
−⇀
i − 3

−⇀
j + 2

−⇀
i + 4

−⇀
j

= 11
−⇀
i + −⇀

j

Compare this result with Example 1c.

• Given any Cartesian vector, how can you generate a unit vector with the
same direction?

Something to Think About

j = [0, 1]

i = [1, 0]

3 j

5 i

y

3

2

1

M
1 2 3 4 5

x

P(5, 3)

⇀

⇀

⇀

⇀

0



1. Represent each vector as an ordered pair.

2. The coordinates of the head and tail of vector 
−⇀
PQ are given. Represent 

−⇀
PQ

as an ordered pair, and graph both 
−⇀
PQ and its corresponding position vector.

a) P(3, 4), Q(4, 7) b) P(4, −1), Q(7, 2)

c) P(11, 1), Q(6, −3) d) P(−3, 4), Q(1, −1)

3. The vector −⇀v = [−6, −2] has tail A and head B. Graph each point A, and
determine the coordinates of B.

a) A(8, 5) b) A(−2, −1) c) A(−4, 3)

4. Point A(5, −3) is the head of vector −⇀v . Graph each vector −⇀v and
determine the coordinates of its tail.

a) −⇀v = [8, −5] b) −⇀v = [−2, −4] c) −⇀v = [11, 7]

5. Let −⇀u = [3, 2].

a) Determine each vector.
i) 2−⇀u ii) 3−⇀u iii) 5−⇀u iv) −4−⇀u

b) Graph −⇀u and the vectors in part a.

c) Determine the length of each vector in part a.

6. Find a vector that has the same direction as −⇀v = [4, 3] and:

a) is 3 times as long as −⇀v . b) is half as long as −⇀v .

c) has length 10. d) has length 1.

7. A quadrilateral has vertices A(4, 1), B(10, 3), C(6, 5), and D(0, 3).

a) Determine 
−⇀
AB,

−⇀
BC,

−⇀
CD, and 

−⇀
DA.

b) Determine the magnitudes of the vectors in part a.

c) What kind of quadrilateral is it? Explain.

B

N

M

K L
J

IP

Q
A

B

G

H

E
F

C

D4

4

4

−8 −4 8
x

y

0

A

Exercises1.5
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8. Repeat exercise 7 for the quadrilateral with vertices A(−2, −1), B(−1, 7),
C(6, 3), and D(5, −5).

9. Application

a) Describe how you could use vectors to determine if three given points 
are collinear.

b) Test your method using each set of points.
i) P(−3, 1), Q(2, 4), R(5, 6) ii) D(5, 1), E(1, −5), F(−3, −11)

10. Knowledge/Understanding If −⇀u = [−2, 4] and −⇀v = [3, −1], determine:

a) −1
2
−⇀u b) 4−⇀v c) −⇀u + −⇀v

d) −⇀u − −⇀v e) −−⇀u + 2−⇀v f) 2−⇀u − 3−⇀v
11. Draw a diagram to illustrate the results of exercise 10.

12. If −⇀a = [5, 3] and 
−⇀
b = [2, −4], determine:

a) −⇀a + 3
−⇀
b b) 2−⇀a − 4

−⇀
b c) −3−⇀a + 5

−⇀
b

13. Draw a diagram to illustrate the results of exercise 12.

14. If −⇀u = 3
−⇀
i − 2

−⇀
j and −⇀v = 2

−⇀
i + −⇀

j , determine:

a) 2−⇀u b) −3−⇀v c) −⇀u + −⇀v
d) −⇀u − −⇀v e) 4−⇀u − 2−⇀v f) −2−⇀u + 3−⇀v

15. Communication Let −⇀a = [4, 1] and 
−⇀
b = [2, 3].

a) Determine −⇀a +
−⇀
b and −⇀a −

−⇀
b .

b) Graph the vectors −⇀a ,
−⇀
b , −⇀a +

−⇀
b , and −⇀a −

−⇀
b .

c) Determine 
∣∣−⇀a +

−⇀
b

∣∣ and 
∣∣−⇀a −

−⇀
b

∣∣ .

d) Use your graph to explain why 
∣∣−⇀a +

−⇀
b

∣∣ is greater than 
∣∣−⇀a −

−⇀
b

∣∣ .

e) Suppose 
−⇀
b were changed to some other vector. Would it always be 

true that 
∣∣−⇀a +

−⇀
b

∣∣ is greater than 
∣∣−⇀a −

−⇀
b

∣∣? Illustrate your answer 
with some examples.

16. Given the vectors −⇀u = [3, 0] and −⇀v = [−1, 2]:

a) Express the vector −⇀w = [2, 8] as a linear combination of −⇀u and −⇀v .

b) Illustrate the results of part a on a diagram.

17. Use the results of exercise 16.

a) Express −⇀u as a linear combination of −⇀v and −⇀w .

b) Express −⇀v as a linear combination of −⇀u and −⇀w .

18. Given the vectors −⇀u = [2, 1] and −⇀v = [−1, 3]:

a) Express the vector −⇀w = [12, −1] as a linear combination of −⇀u and −⇀v .

b) Illustrate the results of part a on a diagram.



19. Use the results of exercise 18.

a) Express −⇀u as a linear combination of −⇀v and −⇀w .

b) Express −⇀v as a linear combination of −⇀u and −⇀w .

20. Thinking/Inquiry/Problem Solving Let −⇀m = [2, −1] and 
−⇀
b = [0, 5].

a) Determine the components of each vector in this list:−⇀
b + 3−⇀m ,

−⇀
b + 2−⇀m ,

−⇀
b + −⇀m ,

−⇀
b + 0−⇀m ,

−⇀
b − −⇀m ,

−⇀
b − 2−⇀m ,

−⇀
b − 3−⇀m

b) Graph all seven vectors in part a with tail at (0, 0).

c) Explain the pattern in the results.

d) How would the above results be affected if vector 
−⇀
b were replaced with

each vector?
i)

−⇀
b = [2, 4] ii)

−⇀
b = [−1, 2]

21. Let −⇀u = [3, −1] and −⇀v = [1, 2].

a) Determine the components of each vector in this list:
−2−⇀u + 3−⇀v , −−⇀u + 2−⇀v , −⇀v , −⇀u , 2−⇀u − −⇀v , 3−⇀u − 2−⇀v

b) Graph all six vectors in part a with tail at (0, 0).

c) Explain the pattern in the results.

d) Would you get similar results if you had started with any other non-zero
vectors −⇀u and −⇀v ? Explain.

22. Let −⇀a = [a1, a2] ,
−⇀
b = [b1, b2] , and −⇀c = [c1, c2]. Let s and t be any

scalars. Prove each property.

a) −⇀a +
−⇀
b =

−⇀
b + −⇀a

b) (−⇀a +
−⇀
b ) + −⇀c = −⇀a + (

−⇀
b + −⇀c )

c) s(−⇀a +
−⇀
b ) = s−⇀a + s

−⇀
b

d) (s + t)−⇀a = s−⇀a + t−⇀a
e) If −⇀a + −⇀v =

−⇀
0 , then −⇀v = −−⇀a .

23. Find a vector whose magnitude is 4 and whose x-component is twice its 
y-component.

24. If −⇀u = [2, −1] and −⇀v = [x, 3], determine all numbers x such that ∣∣−⇀u + −⇀v ∣∣ = 5.

25. Let −⇀a and 
−⇀
b be any two non-collinear vectors. Let −⇀c be a non-zero

vector such that −⇀c = s−⇀a + t
−⇀
b , where s and t are constants. Is it always

possible to express −⇀a as a linear combination of 
−⇀
b and −⇀c ? Use a diagram

to illustrate your answer.

C
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We have represented vectors geometrically as directed line segments and
algebraically as ordered pairs. This means that we have a choice of methods 
for solving problems involving vectors. In applied situations, a vector is usually
described in terms of its magnitude and direction rather than its components. 
To solve the problem algebraically, we need to determine the components. 
The procedure for doing this is called resolving a vector into its components.

Consider the position vector −⇀r = [a, b] shown at the right. The 
components a and b can be expressed in terms of the magnitude 
of −⇀r and the smallest non-negative angle θ that −⇀r makes with the
positive x-axis. This angle is called the direction angle of −⇀r .

We can use the definitions of cosine and sine to determine the
horizontal and vertical components of −⇀r .

cos θ = a∣∣−⇀r ∣∣
a =

∣∣−⇀r ∣∣ cos θ

sin θ = b∣∣−⇀r ∣∣
b =

∣∣−⇀r ∣∣ sin θ

Hence, −⇀r = [a, b] or
[∣∣−⇀r ∣∣ cos θ ,

∣∣−⇀r ∣∣ sin θ
]
.

Writing a Vector Using Magnitude and Direction Angle
Let −⇀r be a non-zero vector that makes an angle
θ with the positive x-axis. Then:

−⇀r =
[∣∣−⇀r ∣∣ cos θ ,

∣∣−⇀r ∣∣ sin θ
]

Take Note

O
x

y
(a, b)

θ

r⇀ b

a

Modelling Velocity and Force1.6

O
x

y

θ

r⇀
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An airplane is flying on a bearing of 320˚ at 500 km/h. Express the velocity
in component form.

Solution

Let −⇀v represent the velocity of the airplane.
Sketch −⇀v on a coordinate grid. A bearing of 320˚ corresponds to a
direction angle of 130˚. The plane’s speed is 500 km/h, so 

∣∣−⇀v ∣∣ = 500.
−⇀v =

[∣∣−⇀v ∣∣ cos θ ,
∣∣−⇀v ∣∣ sin θ

]
= [500 cos 130˚, 500 sin 130˚]
.= [−321, 383]

In component form, the velocity of the airplane is approximately 
[−321, 383].

O
x

y

130˚

320˚

40˚500

v⇀

Example 1
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Velocities are an important application of vectors. When a boat or airplane is
steered toward a particular direction, that direction is called the heading. 
A wind, or a current, can add another velocity component to the craft, so 
that the actual bearing relative to the ground is not the same as the heading. 

The wind or current also affects the velocity of the craft. Recall from Example 3
in Section 1.2 that the actual velocity of a boat relative to the shore is the
resultant of its velocity in still water and the velocity of the current. Similarly,
the velocity of an airplane relative to the ground is the resultant of 
the airplane’s velocity in still air and the velocity of the wind.

A small aircraft is flying on a heading of 330˚ at a constant speed of 150 km/h.
The wind is blowing on a bearing of 085˚ with a speed of 40 km/h. Determine
the actual speed and direction of the aircraft relative to the ground. 

Solution

Method 1: Using geometric vectors

Draw a diagram. 
−⇀
OW represents the wind velocity. 

−⇀
OH represents the heading.

Complete parallelogram OWRH. Then 
−⇀
OR represents the velocity of the

aircraft relative to the ground.

O

115˚

150 km/h

40 km/h
W

H R

N

r⇀

O

85˚

330˚

30˚

aircraft
150 km/h

wind 
40 km/h

W

H

N

Example 2
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From the given bearings:
∠ WOH = 30˚ + 85˚

= 115˚

Since OWRH is a parallelogram,
∠ OHR = 180˚ − 115˚

= 65˚

Use the Cosine Law in �OHR to calculate 
∣∣−⇀r ∣∣.∣∣−⇀r ∣∣2 = 402 + 1502 − 2(40)(150) cos 65˚∣∣−⇀r ∣∣ .= 138

Let θ = ∠ ROH. Use the Sine Law to determine θ.
sin θ
40

= sin 65˚
138

sin θ =
(

40
138

)
sin 65˚

θ .= 15˚

The bearing of 
−⇀
OH is 330˚, so the bearing of −⇀r is 330˚ + 15˚, or 345˚.

The aircraft’s speed relative to the ground is 138 km/h on a bearing of 345˚.

Method 2: Using Cartesian vectors

Draw a diagram on a coordinate system where north 
is along the positive y-axis. Bearings of 330˚ and 085˚
correspond to direction angles of 120˚ and 5˚ respectively.

Let −⇀a represent the velocity of the aircraft in still air.
Let −⇀w represent the velocity of the wind.
Let −⇀r represent the velocity of the aircraft relative to 
the ground.

Express −⇀a , −⇀w , and −⇀r algebraically.
−⇀a = [150 cos 120˚, 150 sin 120˚]
−⇀w = [40 cos 5˚, 40 sin 5˚]
−⇀r = −⇀a + −⇀w

= [150 cos 120˚, 150 sin 120˚] + [40 cos 5˚, 40 sin 5˚]
= [150 cos 120˚ + 40 cos 5˚, 150 sin 120˚ + 40 sin 5˚]
.= [−35.2, 133.4]

The magnitude of the resultant is:∣∣−⇀r ∣∣ =
√

(−35.2)2 + (133.4)2
.= 138

The bearing of the aircraft is 270˚ + θ

tan θ = 133.4
35.2

θ .= 75˚
x

y

θ
270˚ + θ

r133.4

35.2

(−35.2, 133.4)

⇀

O

85˚

120˚

330˚

30˚

40

y

x

5˚

w⇀

a⇀

150

Cosine Law
Sine Law

Student Reference
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Hence, the bearing is 270˚ + 75˚, or 345˚.

The aircraft’s speed relative to the ground is 138 km/h on a bearing of 345˚.

Another important application of vectors is that of forces acting on an object.
When two or more forces act on an object, the forces can be added together. The
resultant force produces the same net effect as the individual forces combined.

Two tractors are being used to pull a tree stump out of the ground. The 
larger tractor pulls with a force of 3000 N east. The smaller tractor pulls 
with a force of 2300 N northeast. Find the magnitude of the resultant force 
and the angle it makes with the 3000 N force. 

Solution

Method 1: Using geometric vectors

Draw a diagram. 
−⇀
OA and 

−⇀
OB represent the forces exerted 

by the two tractors.

Complete parallelogram OACB. Then 
−⇀
OC represents the 

resultant force.

∠ BOA = 45˚
OACB is a parallelogram, so:

∠ OAC = 180˚ − 45˚
= 135˚

Use the Cosine Law to calculate 
∣∣−⇀r ∣∣.∣∣−⇀r ∣∣2 = 30002 + 23002 − 2(3000)(2300) cos 135˚∣∣−⇀r ∣∣ .= 4904

Let θ = ∠ COA. Use the Sine Law to determine θ.
sin θ
2300

= sin 135˚
4904

sin θ =
(

2300
4904

)
sin 135˚

θ .= 19˚
The resultant force has a magnitude of 4904 N and acts at an angle of 
19˚ to the 3000 N force.

3000 N

2300 N

A

B C

r

O

⇀

45˚

Stump

N

45˚
45˚

3000 N

2300 N

A

B

Example 3
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Method 2: Using Cartesian vectors

Draw a diagram on a coordinate system where north is along 
the positive y-axis.

Let 
−⇀
l and −⇀s represent the forces exerted by the large and 

small tractors respectively. 
Let −⇀r be the resultant force.

Represent −⇀r ,
−⇀
l , and −⇀s algebraically.

−⇀
l = [3000, 0]

−⇀s = [2300 cos 45˚, 2300 sin 45˚]

−⇀r =
−⇀
l + −⇀s

= [3000, 0] + [2300 cos 45˚, 2300 sin 45˚]
= [3000 + 2300 cos 45˚, 2300 sin 45˚]
.= [4626.3, 1626.3]

The magnitude of the resultant is:∣∣−⇀r ∣∣ =
√

(4626.3)2 + (1626.3)2
.= 4904

The direction of the resultant is:

tan θ = 1626.3
4626.3

θ .= 19˚
The resultant force has a magnitude of 4904 N 
and acts at an angle of 19˚ to the 3000 N force.

Sometimes an object is acted upon by forces, but does not move. 
The object is said to be in equilibrium, and the sum of the forces 
acting on the object is the zero vector.

For example, in the diagram at the right, the object at point A is in

equilibrium under the forces 
−⇀
F1,

−⇀
F2, and 

−⇀
F3. Observe that 

−⇀
F3 is 

equal in magnitude but opposite in direction to the resultant of 
−⇀
F1

and 
−⇀
F2. We can write 

−⇀
F3 = −(

−⇀
F1 +

−⇀
F2) or 

−⇀
F1 +

−⇀
F2 +

−⇀
F3 =

−⇀
0 . 

−⇀
F3 is called the equilibrant of 

−⇀
F1 and 

−⇀
F2 since it counterbalances 

their resultant. In general, the equilibrant force is equal in magnitude 
but opposite in direction to the resultant force.

F1 + F2
F1

F2

F1 + F2 + F3 = 0
⇀⇀ ⇀ ⇀

⇀

⇀
⇀ ⇀

⇀
F3

A

θ
r 1626.3

4626.3

(4626.3, 1626.3)

y

x

⇀

0

y

x45˚
45˚

3000 N 

23
00

 N
 

s⇀

l
⇀

0
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A 100-N weight is suspended from the ceiling by two ropes 
that make angles of 30˚ and 45˚ with the ceiling. Determine 
the tension in each rope.

Solution

Draw a diagram. The forces are in equilibrium. The force exerted by 
the weight is directed downward. The forces in the ropes are along
the ropes directed away from the weight.

Let 
−⇀
T1 and 

−⇀
T2 represent the forces in the two ropes respectively. 

The tension in each rope is the magnitude of the corresponding
force.

Method 1: Using geometric vectors

Draw a vector diagram and the corresponding triangle diagram. Since 
the forces are in equilibrium, the resultant of the forces in the two ropes
is equal and opposite to the force exerted by the 100 N weight.

Use the Sine Law to find 
∣∣−⇀T1

∣∣ and 
∣∣−⇀T2

∣∣.
∣∣−⇀T1

∣∣
sin 45˚

=
∣∣−⇀T2

∣∣
sin 60˚

= 100
sin(30˚ + 45˚)

∣∣−⇀T1
∣∣ = 100 sin 45˚

sin 75˚
.= 73

∣∣−⇀T2
∣∣ = 100 sin 60˚

sin 75˚
.= 90

The tensions in the two ropes are 73 N and 90 N
respectively.

Method 2: Using Cartesian vectors

Place the diagram on a coordinate system and represent each vector 

algebraically. Let 
−⇀
W represent the force exerted by the 100 N weight. 

Let t1 =
∣∣−⇀T1

∣∣ and t2 =
∣∣−⇀T2

∣∣.
−⇀
T1 = [t1 cos 30˚, t1 sin 30˚]
−⇀
T2 = [t2 cos 135˚, t2 sin 135˚]
−⇀
W = [0, −100]

45˚

135˚

30˚

T1
T2

100 

y

t2
t1

x

⇀
⇀

⇀
W

T

1

45˚

45˚
45˚

30˚
60˚

30˚

2

T

100 N 

O

A

B

⇀

⇀

T2
T1

45˚ 30˚

T1 + T2

100 N

O

C

A

B

⇀

⇀ ⇀

⇀

45˚ 30˚

T1

T2

100 N

⇀

⇀

100 N

45˚ 30˚

Example 4



−⇀
W is equal and opposite to the resultant of 

−⇀
T1 and 

−⇀
T2.

−⇀
T1 +

−⇀
T2 = −

−⇀
W

[t1 cos 30˚, t1 sin 30˚] + [t2 cos 135˚, t2 sin 135˚] = [0, 100]

Equate the x- and y-components.
t1 cos 30˚ + t2 cos 135˚ = 0 ➀

t1 sin 30˚ + t2 sin 135˚ = 100 ➁

Equations ➀ and ➁ form a system of linear equations. Solve the system.
Solve equation ➀ for t1.

t1 cos 30˚ + t2 cos 135˚ = 0

t1 = −t2 cos 135˚
cos 30˚ ➂

Substitute equation ➂ in equation ➁ then solve for t2.(
−t2 cos 135˚

cos 30˚

)
sin 30˚ + t2 sin 135˚ = 100

−t2 cos 135˚ tan 30˚ + t2 sin 135˚ = 100

Simplify by removing a common factor of t2.

t2(−cos 135˚ tan 30˚ + sin 135˚) = 100

t2 = 100
−cos 135˚ tan 30˚ + sin 135˚

.= 90

Solve for t1 by substituting t2 = 90 into equation ➂ .

t1
.= −90 cos 135˚

cos 30˚
.= 73

The tensions in the two ropes are 73 N and 90 N respectively.

• Refer to the solutions for Examples 2, 3, and 4. When is a geometric
approach easier to use? When is an algebraic approach easier to use?

Something to Think About

Recall that sin θ
cos θ

= tan θ .
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Unless stated otherwise, use the method of your choice to complete the
following exercises.

1. Express each velocity in component form.

a) a velocity of 150 km/h north

b) a velocity of 80 km/h southwest

c) a velocity of 350 km/h on a heading of 035˚

d) a velocity of 140 km/h on a heading of 150˚

e) a velocity of 30 km/h on a heading of 290˚

2. Buffy and Chie push a crate across a smooth horizontal floor. If Buffy
pushes with a force of 50 N west and Chie pushes with a force of 35 N
south, determine the resultant force exerted on the crate.

3. Knowledge/Understanding Two forces of 220 N and 400 N act on an
object. The angle between the forces is 55˚.

a) Determine the magnitude of the resultant force.

b) Determine the direction of the resultant relative to the 220 N force.

4. Two forces of 20 N and 30 N act on an object at an angle of 120˚ to each
other. Determine the magnitude of the equilibrant force and the angle it
makes with the 30 N force.

5. Application Two forces act on an object at an angle of 75˚. One force is
195 N. The resultant force is 225 N. Determine the second force and the
angle that it makes with the resultant.

6. Each of three brothers has tied a rope to a buoy floating on a lake. Paco
pulls towards the east with a force of 40 N. Louis pulls towards the
southwest with a force of 30 N. What force should Pepe exert to hold his
brothers’ efforts in equilibrium?

7. Communication Two cables hold a 225-N  
crate as shown in the diagram at the right. 
Explain how to find the tension in each cable.

225 N

35˚ 24˚

B

A

Exercises1.6
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8. A child with weight 100 N is sitting on a swing. 
Her mother pulls the swing back until the chain
makes an angle of 30˚ with the vertical. Determine
the tension in the chain and the magnitude of the
pulling force exerted by the mother.

9. A picture of weight 10 N hangs from two wires as shown in the 
diagram at the right. Determine the tension in each wire assuming
that the picture is hung symmetrically on the wires.

10. A plane is flying southeast at a constant speed of 900 km/h. The
wind is blowing towards the north at 100 km/h. Determine the 
resultant velocity of the plane relative to the ground.

11. A plane flies on a heading of 030˚ at a constant speed of 600 km/h. If the
velocity of the wind is 80 km/h on a bearing of 113˚, what is the velocity 
of the plane relative to the ground?

12. A pilot wishes to fly from Toronto to Montreal, a distance of 508 km on a
bearing of 075˚. The cruising speed of the plane is 550 km/h. An 80 km/h
wind is blowing on a bearing of 125˚.

a) What heading should the pilot take to reach his destination?

b) What will be the speed of the plane relative to the ground?

c) How long will the trip take?

13. Thinking/Inquiry/Problem Solving A pilot wishes to fly to a city 80 km
due east of her current location. She finds that she must steer the airplane 
on a bearing 080˚ to stay on course because there is a wind from the north.
If the flight takes 20 min, find the speed of the wind.

60˚

30˚
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In earlier sections, you learned how to add and subtract vectors, and how to
multiply a vector by a scalar. It is natural to ask whether a useful product of two
vectors can be defined and whether the result is a scalar or a vector. There are
two products of vectors that have great significance in mathematics and science.
We will introduce one of these products in this section, and the other product,
the cross product, in Chapter 2.

In your study of science, you may have encountered the concept of the work
done by a force when it displaces an object. Both force and displacement have
magnitude and direction, and so are vector quantities. The concept of work, a
scalar quantity, involves a product of two vectors that is called the dot product
(see exercises 20 and 21). We define this product as follows.

We define the angle between two vectors to be the smaller (non-negative) angle

Definition of the Dot Product
Suppose −⇀a and 

−⇀
b are two non-zero vectors 

arranged tail-to-tail forming an angle θ, where

0˚ ≤ θ ≤ 180˚. The dot product,−⇀a •
−⇀
b ,

is defined as follows:
−⇀a •

−⇀
b =

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ

The dot product is the product of the magnitudes of the two vectors and
the cosine of the angle between them. Therefore, the dot product of two
vectors is a scalar not a vector. It is a real number.

Take Note

The Dot Product1.7

b

a
θ

⇀

⇀

formed when the vectors are arranged tail-to-tail. To calculate the dot product
of two vectors, we multiply their magnitudes and the cosine of the angle
between them. For example:

−⇀a •
−⇀
b = (3)(2) cos 40˚

.= 4.5963

−⇀a •
−⇀
b = (4)(1.5) cos 90˚

= 0

−⇀a •
−⇀
b = (2)(2.5) cos 125˚

.= −2.8679

The three examples above show why the cosine of the angle between the
vectors is included in the definition. It introduces a simple relationship between
the values of the dot product and the angle between the vectors.

2.52
125˚

4
1.5

2

3

40˚
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• Since cos 90˚ = 0, the dot product of perpendicular vectors is 0.

• Since the cosine of an acute angle is positive, vectors forming an acute angle 
have a positive dot product.

• Since the cosine of an obtuse angle is negative, vectors forming an obtuse
angle have a negative dot product.

The definition of the dot product is well suited for calculating dot products of
vectors in geometric form. If the vectors are in Cartesian form, we would need
to calculate their magnitudes and the angle between them to determine the dot
product. Instead of doing that, we can develop a general formula.

In the diagram,
−⇀
OA = −⇀a ,

−⇀
OB =

−⇀
b , and 

−⇀
BA = −⇀c .

−⇀a = [a1, a2] and
∣∣−⇀a ∣∣2 = a1

2 + a2
2

−⇀
b = [b1, b2] and

∣∣−⇀b ∣∣2 = b1
2 + b2

2

−⇀c = −⇀a −
−⇀
b

= [a1, a2] − [b1, b2]
= [a1 − b1, a2 − b2]

∣∣−⇀c ∣∣2 = (a1 − b1)2 + (a2 − b2)2

= a1
2 − 2a1b1 + b2

1 + a2
2 − 2a2b2 + b2

2

Now 
∣∣−⇀c ∣∣2

can also be obtained using the Cosine Law.∣∣−⇀c ∣∣2 =
∣∣−⇀a ∣∣2 +

∣∣−⇀b ∣∣2 − 2
∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ

a1
2 − 2a1b1 + b2

1 + a2
2 − 2a2b2 + b2

2 = a1
2 + a2

2 + b1
2 + b2

2 − 2
∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ

−2a1b1 − 2a2b2 = −2
∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ = a1b1 + a2b2

Since the expression on the left side is −⇀a •
−⇀
b , we obtain:

−⇀a •
−⇀
b = a1b1 + a2b2

This equation expresses −⇀a •
−⇀
b in terms of its components in Cartesian form.

Dot Product of Cartesian Vectors
If −⇀a = [a1, a2] and 

−⇀
b = [b1, b2] , then

−⇀a •
−⇀
b = a1b1 + a2b2

Take Note

Cosine Law

Student Reference

O
x

y

A(a1, a2)

B(b1, b2)

b

a

c
⇀

⇀

⇀

θ
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y
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b
⇀
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The dot product of two Cartesian vectors is the sum of the products of their
corresponding components. For example:

−⇀a •
−⇀
b = [4, 2] • [1, 3]

= (4)(1) + (2)(3)
= 10

−⇀a •
−⇀
b = [4, 1] • [−1, 4]

= (4)(−1) + (1)(4)
= 0

−⇀a •
−⇀
b = [4, 1] • [−2, 3]

= (4)(−2) + (1)(3)
= −5

A useful application of the dot product is to calculate the angle between 
two vectors. We use the formula below, which we obtain by solving−⇀a •

−⇀
b =

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ for cos θ .

Triangle DEF has vertices D(−2, 6), E(1, 2), and F(5, 4). Calculate ∠ DEF.

Solution
−⇀
EF = [5 − 1, 4 − 2]

= [4, 2]
and

−⇀
ED = [−2 − 1, 6 − 2]

= [−3, 4]

y

2

6

0
x

2 4

E

F

D

Example

The Angle between Two Vectors 
Let −⇀a and 

−⇀
b be any two non-zero

vectors forming an angle θ. 

cos θ =
−⇀a •

−⇀
b∣∣−⇀a ∣∣∣∣−⇀b ∣∣

Take Note

0
x

y

ab ⇀⇀

4

40
x

y

ab ⇀
⇀

4

40
x

y

a
b
⇀

⇀

4

4

θ

b

a

⇀

⇀



cos ∠ E =
−⇀
EF •

−⇀
ED∣∣−⇀EF

∣∣∣∣−⇀ED
∣∣

= [4, 2] • [−3, 4]√
42 + 22

√
(−3)2 + 42

= (4)(−3) + (2)(4)√
20

√
25

= −2
5
√

5
.= −0.179

∠ E
.= 100˚

Therefore, ∠ DEF
.= 100˚ .

In the Example, we could use the same method to calculate the other two angles
of the triangle.

1. State the angle between the two vectors.

a) b) c)

2. Calculate the dot product of each pair of vectors.

a) b) c)

3. Calculate the dot product of each pair of vectors.

a) −⇀a = [6, 2],
−⇀
b = [3, 4] b) −⇀a = [−2, 5],

−⇀
b = [3, 1]

c) −⇀a = [3, 1],
−⇀
b = [−2, 6] d) −⇀a = [−1, −7],

−⇀
b = [2, −3]

4. The vectors 
−⇀
i = [1, 0] and 

−⇀
j = [0, 1] define a unit square. 

Determine each dot product in two different ways.

a)
−⇀
i •

−⇀
i b)

−⇀
j •

−⇀
j c)

−⇀
i •

−⇀
j

10
x

1
y

j = [0, 1]

i = [1, 0]

⇀

⇀

2.4

3

150˚
32

3

5
70˚

120˚45˚

45˚

A
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5. Communication  The dot product of two vectors −⇀a and 
−⇀
b is defined to 

be 
∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ, where θ is the angle between them. Explain why this is a

better definition than 
∣∣−⇀a ∣∣∣∣−⇀b ∣∣ or 

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ sin θ.

6. Calculate the angle between the given vectors.

a) −⇀u = [0, 4], −⇀v = [5, 1] b) −⇀u = [3, −2], −⇀v = [−1, 2]

c) −⇀u = [4, −1], −⇀v = [−2, −5] d) −⇀u = [6, 3], −⇀v = [2, −4]

7. Suppose the only thing you know about vectors −⇀u and −⇀v is that−⇀u • −⇀v = 0.5. What, if anything, does this tell you about these vectors?

8. Knowledge/Understanding Calculate the angles in each triangle.

a) �ABC with vertices A(−1, 0), B(−2, 1), and C(1, 4)

b) �PQR with vertices P(2, 6), Q(8, 3), and R(−4, 0)

9. a) Graph the quadrilaterals with these vertices:
Quadrilateral ABCD: A(−4, 2), B(5, 5), C(6, 2), D(−3, −1)
Quadrilateral PQRS: P(−3, 5), Q(9, 1), R(7, −6), S(−5, −2)

b) Use vectors to show that only one of these quadrilaterals is a rectangle.

10. Use the graph of �PQR (below left).

a) Determine each dot product.
i)

−⇀
PQ •

−⇀
PR ii)

−⇀
QP •

−⇀
QR iii)

−⇀
RQ •

−⇀
RP

b) Explain why two of the dot products in part a are equal.

c) If the triangle was equilateral, how would the three dot products 
be related?

11. Use the graph of parallelogram ABCD (above right).

a) Determine each dot product.
i)

−⇀
AB •

−⇀
AD ii)

−⇀
CB •

−⇀
CD iii)

−⇀
BA •

−⇀
BC iv)

−⇀
DA •

−⇀
DC

b) Describe how the dot products in part a are related.

c) Explain why this relationship applies to all parallelograms.

d) What special case results if the parallelogram is a rectangle?

A
B

C
D

4 80
x

2

4

yQ

P

R

4−4 0
x

2

−2

y

B
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12. Application

a) Describe how you could use dot products of vectors to determine whether
three given points are the vertices of a right triangle.

b) Test your method using each set of points.
i) A(−5, 5), B(−2, 1), C(7, 8) ii) J(−3, −4), K(5, 0), L(2, 6)

13. a) Describe how you could use dot products of vectors to determine whether
three given points are collinear.

b) Test your method using each set of points.
i) D(−4, 7), E(2, 3), F(8, −1) ii) R(7, 2), S(4, 1), T(−4, −2)

14. The vector [5, 2] represents one side of a square. Write vectors to represent
the other three sides.

15. The length of a rectangle is double its width. The vector [4, 2] represents
one side of this rectangle. Write all possible vectors that could represent 
the other sides of this rectangle.

16. Thinking/Inquiry/Problem Solving  The dot product has a geometric 

interpretation as an area. Let −⇀a =
−⇀
OA and 

−⇀
b =

−⇀
OB be any two vectors 

forming an angle θ. Then −⇀a •
−⇀
b can be expressed as 

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ.

a) Assume that 0˚ ≤ θ < 90˚. On the diagram below, point C was constructed
so that ∠ OCB = 90˚. Then point D was constructed so that OD = OC.
Segments OA and OD form adjacent sides of rectangle OAED. Show 
that −⇀a •

−⇀
b represents the area of this rectangle.

b) Describe what happens to the rectangle when θ = 90˚, and when θ = 0˚.

c) What special case occurs when θ = 45˚? Explain.

17. Let −⇀u = [2, 0], −⇀v = [2, 1], and −⇀w = [1, 2].

a) Graph −⇀u , −⇀v , and −⇀w on a grid.

b) Determine each of the following:
i) (−⇀u • −⇀v )−⇀w ii) (−⇀v • −⇀w )−⇀u iii) (−⇀w • −⇀u )−⇀v

c) Explain what the expressions in part b represent. Illustrate on a diagram.

b

a

D E

C

B

AO θ

⇀

⇀
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18. Determine the value of k such that each pair of vectors is perpendicular.

a) −⇀a = [k, −2],
−⇀
b = [−1, 2] b) −⇀a = [−3, 4],

−⇀
b = [5, k]

19. Let −⇀a = [2, −3],
−⇀
b = [−1, 4], and −⇀c = [5, 2]. Determine each dot product.

a) −⇀a • (
−⇀
b + −⇀c ) b) (−⇀a +

−⇀
b ) • −⇀c

c) (−⇀a +
−⇀
b ) • (−⇀a + −⇀c ) d) (2−⇀a + 3

−⇀
b ) • (5−⇀a − 2

−⇀
b )

20. In physics, if a constant force is applied to an object 
and moves it from point A to point B, the work done 
is the product of the magnitude of the displacement 
and the magnitude of the force in the direction of the
displacement. In the diagram, the vector 

−⇀
d represents 

the displacement of an object when a force 
−⇀
F is applied 

to it at an angle θ to the direction of the displacement.

a) Write an expression for the magnitude of the force in the direction of the
displacement.

b) Show that the work done is 
−⇀
F •

−⇀
d .

21. A child pulls a wagon with a constant force of 30 N. How much work is done
in moving the wagon 100 m if the handle makes an angle of 30˚ with the
ground? The unit of work is a newton metre, also called a joule.

22. Refer to exercise 16. Draw a diagram to represent the situation when θ is an
obtuse angle.

23. Refer to exercise 16. Draw vectors −⇀a and 
−⇀
b as they are in the given

diagram.

a) Construct a different rectangle whose area equals the dot product−⇀a •
−⇀
b .

b) Repeat parts b and c of exercise 16 for your rectangle.

C

A B θd
⇀

F
⇀

58 CHAPTER 1 GEOMETRIC AND CARTESIAN VECTORS



In Section 1.7 we defined the dot product of the vectors −⇀a and 
−⇀
b to be the

product of their magnitudes and the cosine of the angle between them:

−⇀a •
−⇀
b =

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ

Then we showed that for Cartesian vectors −⇀a = [a1, a2] and 
−⇀
b = [b1, b2] :

−⇀a •
−⇀
b = a1b1 + a2b2

To say that −⇀a •
−⇀
b is a product, we need to ensure that it has properties that

correspond to properties of products in arithmetic and algebra.

The Commutative Law

Products in arithmetic and algebra satisfy the commutative law of multiplication,
xy = yx . We would expect that the dot product also satisfies this law, but we cannot 
assume that this is so. To prove this, we can use either the definition of the dot
product or Cartesian vectors.

Proof that −⇀a •
−⇀
b = −⇀

b • −⇀a
Using the definition Using Cartesian vectors

−⇀a •
−⇀
b =

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ

=
∣∣−⇀b ∣∣∣∣−⇀a ∣∣ cos θ

=
−⇀
b • −⇀a

−⇀a •
−⇀
b = a1b1 + a2b2

= b1a1 + b2a2

=
−⇀
b • −⇀a

Both proofs use the fact that multiplication of real numbers is commutative.
However, we cannot assume from this that all properties of multiplication of
real numbers carry over to dot products. We have already seen an example of
one that does not. The product of two real numbers is a real number, but the dot
product of two vectors is not a vector. See exercises 3 and 5 for two other

Properties of the Dot Product and Projections1.8
properties of products in arithmetic that are not properties of dot products.

• When writing a dot product, we must always use the dot. The
expression −⇀a ×

−⇀
b is not defined for 2-dimensional vectors. The

expressions −⇀a −⇀
b and (−⇀a )(

−⇀
b ) are not defined for any vectors.

Something to Think About
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The Distributive Law

Operations in arithmetic satisfy the distributive law. We saw in Section 1.4 that
scalar multiplication is distributive over vector addition:
m(−⇀a +

−⇀
b ) = m−⇀a + m

−⇀
b . The corresponding property for dot products is 

−⇀a • (
−⇀
b + −⇀c ) = −⇀a •

−⇀
b + −⇀a • −⇀c .

The proof of this property using the definition is not as straightforward as the
proof of the commutative law. However, we can prove it easily using Cartesian
vectors.

Proof that −⇀a • (
−⇀
b + −⇀c ) = −⇀a •

−⇀
b + −⇀a • −⇀c

Let −⇀a = [a1, a2] ,
−⇀
b = [b1, b2] , and −⇀c = [c1, c2].

Then 
−⇀
b + −⇀c = [b1, b2] + [c1, c2]

= [b1 + c1, b2 + c2]

−⇀a • (
−⇀
b + −⇀c ) = [a1, a2] • [b1 + c1, b2 + c2]

= a1(b1 + c1) + a2(b2 + c2)
= a1b1 + a1c1 + a2b2 + a2c2

−⇀a •
−⇀
b + −⇀a • −⇀c = [a1, a2] • [b1, b2] + [a1, a2] • [c1, c2]

= a1b1 + a2b2 + a1c1 + a2c2

Since the results are equal, we conclude that:
−⇀a • (

−⇀
b + −⇀c ) = −⇀a •

−⇀
b + −⇀a • −⇀c

Hence, the dot product is distributive over vector addition.

In algebra, the distributive law, x(y + z) = xy + xz, is important because it is the
basis for expanding products of polynomials, such as (x + 2)(x + 3) = x2 + 5x + 6
and (x + y)2 = x2 + 2xy + y2 . Since the dot product is distributive over vector
addition, we expect that we can do similar calculations with expressions involving
dot products. This is true, but with certain differences that take into account that 
we are working with vectors and not real numbers.

For example, we can write the following equation:

(−⇀a +
−⇀
b ) • (−⇀a +

−⇀
b ) = −⇀a • −⇀a + 2−⇀a •

−⇀
b +

−⇀
b •

−⇀
b ➀

This can be proved using the distributive and commutative laws proved above 
(see exercise 8). Notice that we do not write (−⇀a +

−⇀
b ) • (−⇀a +

−⇀
b ), −⇀a • −⇀a ,

and 
−⇀
b •

−⇀
b as squares because we have not defined the square of a vector.

Equation ➀ contains two terms that are the dot product of a vector with itself.
Let us consider one of these terms.
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−⇀a • −⇀a = [a1, a2] • [a1, a2]
−⇀a • −⇀a = a1

2 + a2
2

−⇀a • −⇀a =
∣∣−⇀a ∣∣2

This important result shows that the dot product of a vector with itself is the
square of its magnitude.

We can use this property to write equation ➀ in a different form:∣∣−⇀a +
−⇀
b

∣∣2 =
∣∣−⇀a ∣∣2 + 2−⇀a •

−⇀
b +

∣∣−⇀b ∣∣2

Use the definition of −⇀a •
−⇀
b to obtain:∣∣−⇀a +

−⇀
b

∣∣2 =
∣∣−⇀a ∣∣2 + 2

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ +
∣∣−⇀b ∣∣2

➁

Equation ➁ corresponds to the equation (x + y)2 = x2 + 2xy + y2 in algebra. 
It relates the magnitude of the sum, −⇀a +

−⇀
b , to the magnitudes of the vectors

−⇀a and 
−⇀
b . The reason why cos θ appears in the equation can be explained

geometrically.

Expand and simplify: (2−⇀u + −⇀v ) • (−⇀u − 2−⇀v )

Solution

Use the rules of algebra, but write dot products.
(2−⇀u + −⇀v ) • (−⇀u − 2−⇀v ) = (2−⇀u ) • (−⇀u ) + (2−⇀u ) • (−2−⇀v ) + −⇀v • (−⇀u ) + −⇀v • (−2−⇀v )

= 2−⇀u • −⇀u − 4−⇀u • −⇀v + −⇀u • −⇀v − 2−⇀v • −⇀v
= 2−⇀u • −⇀u − 3−⇀u • −⇀v − 2−⇀v • −⇀v

Properties of the Dot Product
Let −⇀a ,

−⇀
b , and −⇀c be three non-zero, non-collinear vectors arranged 

tail-to-tail.

−⇀a •
−⇀
b =

−⇀
b • −⇀a

−⇀a • (
−⇀
b + −⇀c ) = −⇀a •

−⇀
b + −⇀a • −⇀c

−⇀a • −⇀a =
∣∣−⇀a ∣∣2

−⇀a •
−⇀
0 = 0

−⇀a • −⇀u =
∣∣−⇀a ∣∣ where −⇀u is a unit vector in the same direction as −⇀a

If −⇀a •
−⇀
b = 0, then −⇀a and 

−⇀
b are perpendicular.

Take Note

Example 1
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Vectors are used in computer animation to determine the length of a shadow
projected onto a flat surface. We use this idea to define the projection of a
vector on a vector.

Let −⇀a =
−⇀
OA and 

−⇀
b =

−⇀
OB be any two vectors (

−⇀
b ≠

−⇀
0 ) forming an angle θ.

Let N be the point on the line OB such that AN is perpendicular to OB. Then
we define the projection of −⇀a on 

−⇀
b to be the vector 

−⇀
ON. We think of this as

the shadow of −⇀a on 
−⇀
b .

Since 
−⇀
ON is a scalar multiple of 

−⇀
b , let 

−⇀
ON = k

−⇀
b . To determine k, we

calculate the magnitude of 
−⇀
ON in two ways. In the following, we assume that

0˚ ≤ θ ≤ 90˚. The development for 90˚ < θ ≤ 180˚ is similar, except that the
direction of the projection is opposite to the direction of 

−⇀
b .

The magnitude of 
−⇀
ON is k times the magnitude of 

−⇀
b . Therefore:∣∣−⇀ON

∣∣ = k
∣∣−⇀b ∣∣ ➂

In �AON,∣∣−⇀ON
∣∣ =

∣∣−⇀a ∣∣ cos θ

=
∣∣−⇀a ∣∣ ×

−⇀a •
−⇀
b∣∣−⇀a ∣∣∣∣−⇀b ∣∣

=
−⇀a •

−⇀
b∣∣−⇀b ∣∣ ➃

O
B

N

A

θ

b

a⇀

⇀

V
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Compare ➂ and ➃ :

k
∣∣−⇀b ∣∣ =

−⇀a •
−⇀
b∣∣−⇀b ∣∣

k =
−⇀a •

−⇀
b∣∣−⇀b ∣∣2

k =
−⇀a •

−⇀
b

−⇀
b •

−⇀
b

Therefore, the projection of −⇀a on 
−⇀
b is 

−⇀
ON =

(−⇀a •
−⇀
b

−⇀
b •

−⇀
b

) −⇀
b . The projection

is a scalar multiple of 
−⇀
b , and the scalar is equal to 

−⇀a •
−⇀
b

−⇀
b •

−⇀
b

.

There is no standard symbol for the projection of −⇀a on 
−⇀
b . In this book, we 

will use the symbol −⇀a ↓ −⇀
b .

If −⇀u = [−4, 1] and −⇀v = [4, 3], determine −⇀u ↓ −⇀v . Illustrate the result 
on a diagram.

Solution
−⇀u = [−4, 1], −⇀v = [4, 3]
−⇀u ↓ −⇀v is a scalar multiple of −⇀v .
The scalar is:
−⇀u • −⇀v
−⇀v • −⇀v = (−4)(4) + (1)(3)

42 + 32

= −13
25

= −0.52
Hence,
−⇀u ↓ −⇀v = −0.52−⇀v

= −0.52[4, 3]
= [−2.08, −1.56]

4−4

−3

x

3

y

O

u

v⇀

⇀

u ↓ v⇀ ⇀

Example 2

Projection of a Vector
The projection of −⇀a on 

−⇀
b is:

−⇀a ↓ −⇀
b =

(−⇀a •
−⇀
b

−⇀
b •

−⇀
b

) −⇀
b

where
−⇀
b ≠

−⇀
0

Take Note

θ

b

a

a ↓ b

⇀

⇀ ⇀
⇀



In Example 2, notice that −⇀u • −⇀v is negative. Hence, the angle between −⇀u and−⇀v is obtuse. The projection −⇀u ↓ −⇀v is collinear with −⇀v , but has the opposite
direction.

Just like addition, subtraction, and the dot product, vector projection is an
operation on two vectors. You will discover some properties of this operation 
in the exercises (exercises 9, 10, 15–17).

1. Expand and simplify.

a) −⇀a • (
−⇀
b + −⇀c ) b) −⇀a • (−⇀a +

−⇀
b )

c) −⇀u • (−⇀u + 2−⇀v ) d) 3−⇀u • (2−⇀u − 3−⇀v )

2. Expand and simplify.

a) (−⇀a +
−⇀
b ) • (−⇀a −

−⇀
b ) b) (−⇀a −

−⇀
b ) • (−⇀a + 2

−⇀
b )

c) (4−⇀a +
−⇀
b ) • (−⇀a + 2

−⇀
b ) d) (2−⇀a + 3

−⇀
b ) • (3−⇀a − 2

−⇀
b )

3. Knowledge/Understanding

a) Products in arithmetic and algebra satisfy the associative law: (xy)z = x(yz).
This law states that more than two numbers can be multiplied together in any
order. Does the dot product of vectors satisfy the associative law? Explain.

b) Can any meaning be given to the expression −⇀a •
−⇀
b • −⇀c ? Explain.

4. Two properties of multiplication in arithmetic and algebra are:
Multiplying by 0: 0x = 0
Multiplying by 1: 1x = x
The corresponding properties of the dot product of vectors are: −⇀a •

−⇀
0 = 0

and −⇀a • −⇀u = |−⇀a | (where −⇀u is a unit vector in the same direction as −⇀a ).
Prove each property using either the definition of the dot product or
Cartesian vectors.

5. a) If −⇀a • −⇀c =
−⇀
b • −⇀c does it follow that −⇀a =

−⇀
b ? Draw a diagram to

support your explanation.

b) Explain why 
−⇀a • −⇀c
−⇀
b • −⇀c

cannot be written as 
−⇀a
−⇀
b

.

6. Application OABC is a parallelogram with −⇀a =
−⇀
OA and −⇀c =

−⇀
OC. 

a) Express 
−⇀
OB and 

−⇀
AC in terms of −⇀a and 

−⇀
b .

b) What special case of a parallelogram results if
(−⇀c + −⇀a ) • (−⇀c − −⇀a ) = 0? Explain.

A

O

C

B

B

Exercises1.8
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7. Communication The term dot product of vectors implies that we 
are multiplying two vectors. List several properties of dot products and
illustrate how they resemble corresponding properties of products of real
numbers. List two properties of multiplication of real numbers that do not
correspond to dot products.

8. a) Use the distributive and commutative laws to prove that:

(−⇀a +
−⇀
b ) • (−⇀a +

−⇀
b ) = −⇀a • −⇀a + 2−⇀a •

−⇀
b +

−⇀
b •

−⇀
b

b) Show that the equation in part a can be written as:∣∣−⇀a +
−⇀
b

∣∣2 =
∣∣−⇀a ∣∣2 + 2

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ +
∣∣−⇀b ∣∣2

c) What special case results if −⇀a and 
−⇀
b are perpendicular?

9. Show that −⇀a ↓ −⇀a = −⇀a . Use a diagram to explain why this is reasonable.

10. Given −⇀a = [6, 4] and 
−⇀
b = [8, −4]:

a) Determine −⇀a ↓ −⇀
b .

b) Determine 
−⇀
b ↓ −⇀a .

c) Illustrate the results of parts a and b on a diagram.

d) Does vector projection satisfy the commutative law? Explain.

11. Determine the projection of −⇀a on 
−⇀
b . Draw a diagram to illustrate each result.

a) −⇀a = [3, 0],
−⇀
b = [2, 3]

b) −⇀a = [4, 5],
−⇀
b = [−5, 4]

c) −⇀a = [−4, −2],
−⇀
b = [3, 1]

d) −⇀a = 2
−⇀
i − 3

−⇀
j ,

−⇀
b = 6

−⇀
i + 2

−⇀
j

12. Triangle PQR has vertices P(−4, 0), Q(−1, 6), and R(3, 4).

a) Graph �PQR.

b) Determine each projection. Illustrate the result on your graph.
i)

−⇀
PR ↓ −⇀

PQ ii)
−⇀
RP ↓ −⇀

RQ iii)
−⇀
PQ ↓ −⇀

PR iv)
−⇀
QR ↓ −⇀

PR

c) Explain what 
−⇀
PQ ↓ −⇀

PR +
−⇀
QR ↓ −⇀

PR represents.

13. Vectors −⇀a and 
−⇀
b are such that 

∣∣−⇀a ∣∣ = 4,
∣∣−⇀b ∣∣ = 7, and the angle between

them is 60˚.

a) Determine −⇀a ↓ −⇀
b .

b) Draw a diagram to illustrate these vectors.
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14. Vectors −⇀u and −⇀v are such that 
∣∣−⇀u ∣∣ = 8,

∣∣−⇀v ∣∣ = 11, and the angle
between them is 135˚.

a) Determine −⇀u ↓ −⇀v .

b) Draw a diagram to illustrate these vectors.

15. Draw a diagram to illustrate your answer to each question.

a) Is it possible to have −⇀a ↓ −⇀
b =

−⇀
0 ?

b) Is it possible for −⇀a ↓ −⇀
b to be undefined?

16. Thinking/Inquiry/Problem Solving Use a diagram to explain what each
expression represents.

a) (−⇀a ↓ −⇀
b ) ↓ −⇀

b

b)
−⇀
b ↓ (−⇀a ↓ −⇀

b )

c) (−⇀a ↓ −⇀
b ) ↓ −⇀a

d) −⇀a ↓ (−⇀a ↓ −⇀
b )

17. Suppose −⇀a ,
−⇀
b , and −⇀c are non-zero vectors.

a) Is it possible to have −⇀a ↓ −⇀
b =

−⇀
b ↓ −⇀a ?

b) Explain why −⇀a ↓ (
−⇀
b ↓ −⇀c ) = −⇀a ↓ −⇀c .

18. Find two perpendicular vectors −⇀u and −⇀v such that one of these vectors is
twice as long as the other, and their sum is the vector [6, 8].

19. a) Show that −⇀a •
−⇀
b = 1

4

∣∣−⇀a +
−⇀
b

∣∣2 − 1
4

∣∣−⇀a −
−⇀
b

∣∣2
.

b) Write a similar equation for the product xy in algebra. Show that your
equation is correct. 

C
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Review ExercisesReview Exercises

A vector quantity has magnitude and direction. 

A geometric vector is represented by a directed line segment 
−⇀
AB whose length,∣∣−⇀AB

∣∣, represents the magnitude of the vector, and whose direction shows the 
direction of the vector. 

Equal vectors have the same magnitude and direction. 
Opposite vectors have the same magnitude but opposite directions.

Addition and Subtraction of Vectors

Geometric vectors can be added using either:

Triangle Law of Vector Addition or Parallelogram Law of Vector Addition

The zero vector,
−⇀
0 , has zero length and no specified direction. 

A geometric vectors may be subtracted by adding its opposite, for example,−⇀a −
−⇀
b = −⇀a + (−

−⇀
b ), or arranging the vectors tail-to-tail as shown below.

Mathematics Toolkit

a + bb

a

⇀

⇀

⇀

⇀

B

b
a − b

⇀⇀
⇀

a + b

b

a

⇀

⇀

⇀

⇀
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Scalar Multiples of Vectors

A vector −⇀v may be multiplied by a scalar k to produce 
a vector k−⇀v whose magnitude is |k| times that of −⇀v ,
and whose direction is either the same as that of −⇀v ,
if k > 0, or opposite, if k < 0.

Two vectors are collinear if one vector is a scalar 
multiple of the other. If −⇀a and 

−⇀
b are non-zero,

non-collinear vectors, then any vector 
−⇀
OP in the plane 

containing −⇀a and 
−⇀
b can be expressed as a linear combination of −⇀a and 

−⇀
b .

O
A

a⇀

a

b

s a

t b
⇀

⇀

⇀

s a
+ t b

⇀

⇀

⇀
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Cartesian Vectors 

Vectors can be represented on a coordinate grid. If A(x1, y1)
and B(x2, y2) are two points on a coordinate grid, the 
components of the vector 

−⇀
AB are [x2 − x1, y2 − y1] . 

The magnitude of 
−⇀
AB is equal to 

√
(x2 − x1)2 + (y2 − y1)2.

If a non-zero vector −⇀v makes an angle θ with the positive 

x-axis, the components of −⇀v are 
[∣∣−⇀v ∣∣ cos θ ,

∣∣−⇀v ∣∣ sin θ
]
.

Operations on Cartesian Vectors

If −⇀u = [x1, y1] and −⇀v = [x2, y2], then −⇀u + −⇀v = [x1 + x2, y1 + y2]
−⇀u − −⇀v = [x1 − x2, y1 − y2]

k−⇀u = [kx1, ky1]

The Dot Product of Two Vectors

If −⇀a and 
−⇀
b are two vectors arranged tail-to-tail forming an angle θ,

where 0˚ ≤ θ ≤ 180˚, then the dot product of these vectors is defined 
to be −⇀a •

−⇀
b =

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ and −⇀a •
−⇀
b is a real number.

So, cos θ =
−⇀a •

−⇀
b∣∣−⇀a ∣∣∣∣−⇀b ∣∣

If −⇀a = [a1, a2] and 
−⇀
b = [b1, b2] , then −⇀a •

−⇀
b = a1b1 + a2b2

Properties of the dot product: −⇀a •
−⇀
b =

−⇀
b • −⇀a

−⇀a • (
−⇀
b + −⇀c ) = −⇀a •

−⇀
b + −⇀a • −⇀c

−⇀a • −⇀a =
∣∣−⇀a ∣∣2

If −⇀a •
−⇀
b = 0 for two non-zero,

non-collinear vectors −⇀a and 
−⇀
b , then θ = 90˚.

Projection of a Vector

The projection of −⇀a on 
−⇀
b is:

−⇀a ↓ −⇀
b =

( −⇀a •
−⇀
b

−⇀
b •

−⇀
b

)−⇀
b

where 
−⇀
b ≠

−⇀
0 .

θ

b

a

a ↓ b

⇀

⇀ ⇀
⇀

y

xA(x1, y1)

B(x2, y2)
AB⇀

0



1. State three examples of scalar quantities and three examples of vector
quantities.

2. Construct a scale drawing of each vector. The direction of each vector is
given in square brackets.

a) 20 N [east] b) 24 m/s [135˚]

3. ABCD is a square (below left).

a) List all pairs of equal vectors.

b) List all pairs of opposite vectors.

4. Use the diagram above right. Express each vector as the sum of two other
vectors.

a)
−⇀
HE b)

−⇀
GF c)

−⇀
DG d)

−⇀
DC

5. In the diagram below, there are 5 congruent rectangles. Express each sum as
a single vector.

a)
−⇀
PG +

−⇀
PR b)

−⇀
RA +

−⇀
RQ c)

−⇀
CD +

−⇀
RS −

−⇀
EF d)

−⇀
DR +

−⇀
QB −

−⇀
FS

6. In any rectangle ABCD, determine the sum 
−⇀
AB +

−⇀
BC +

−⇀
CD +

−⇀
DA. 

A B

G

Q

C
DE

S

F P

R

A E B

F

C

G
D

H

A B

CD

O
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7. Copy each pair of vectors, then draw −⇀u − −⇀v .

8. In the diagram at the right, �ABC is equilateral and D, E, and F 
are the midpoints of its sides. Express each vector as the 
difference of two other vectors.

a)
−⇀
FD b)

−⇀
EB

c)
−⇀
CB d)

−⇀
AE

9. Draw any two non-collinear vectors −⇀u and −⇀v tail-to-tail. 
Draw each of the following on the same diagram.

a) 2−⇀u + 3−⇀v b) 4−⇀u − 2−⇀v
c) −3−⇀u + 4−⇀v d) −−⇀u − −⇀v

10. BCDE is a parallelogram (below left). B is the midpoint of AC,
−⇀
ED = −⇀u ,

and 
−⇀
CD = −⇀v . Express each vector in terms of −⇀u and/or −⇀v .

a)
−⇀
AC b)

−⇀
AD c)

−⇀
EA

11. ABCD is a rectangle (above right). M, N, E, and G are the midpoints of its 
sides. Express 

−⇀
CG and 

−⇀
CM as linear combinations of 

−⇀
CD and 

−⇀
CB.

12. Suppose −⇀u = [−1, 2]. 

a) Determine each vector.
i) 3−⇀u ii) 2−⇀u iii) −−⇀u iv) −4−⇀u

b) Determine the length of each vector in part a.

M B

EF

CND

G

AA B C

DE

v

u⇀

⇀

A D B

E

C

F

a) b) c)

d) e) f)
u

u

u

uu

u

v

v

v

v

v
v

⇀⇀

⇀
⇀

⇀

⇀

⇀

⇀

⇀

⇀

⇀

⇀
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13. A triangle has vertices A(3, 2), B(7, 4), and C(–1, 10). 

a) Determine 
−⇀
AB,

−⇀
BC and 

−⇀
CA.

b) What kind of triangle is ABC? Justify your answer.

14. Consider the vectors −⇀u = [0, 2] and −⇀v = [1, −3].

a) Express the vector −⇀w = [4, 8] as a linear combination of −⇀u and −⇀v .

b) Illustrate the results of part a on a diagram.

15. Two forces of 90 N act on an object. The forces make an angle of 48˚ to
each other. Calculate the resultant force and the force that must be applied 
to the object to create equilibrium.

16. A plane flies on a heading of 120˚ at a constant speed of 550 km/h. If the
velocity of the wind is 50 km/h on a bearing 220˚, what is the velocity of
the plane with respect to the ground?

17. A boat travels at a speed of 5 m/s in still water. The boat moves directly
across a river that is 70 m wide. The water in the river flows at a speed 
of 2 m/s. How long does it take the boat to cross the river? In what 
direction is the boat headed when it starts the crossing?

18. Calculate the angle between the given vectors.

a) −⇀a = [2, 0],
−⇀
b = [4, 3] b) −⇀a = [−2, 1],

−⇀
b = [3, 5]

c) −⇀a = [4, −2],
−⇀
b = [−1, −3] d) −⇀a = [2, 6],

−⇀
b = [−2, −1]

19. Calculate the angles of �ABC with vertices A(–3, 5), B(8, 1), and C(–2, –1).

20. Suppose −⇀a = [−1, 3],
−⇀
b = [4, 2], and −⇀c = [−2, −1]. Determine each

product.

a) −⇀a • (
−⇀
b + −⇀c ) b) (−⇀a −

−⇀
b ) • −⇀c c) (2−⇀a + −⇀c ) • (−⇀a − 3

−⇀
b )

21. Verify your answers to exercise 20 by first expanding each product.

22. Expand and simplify.

a) (−⇀u + 3−⇀v ) • (2−⇀u + −⇀v ) b) (3−⇀a − 4
−⇀
b ) • (3−⇀a + 4

−⇀
b )

23. Vectors −⇀a and 
−⇀
b are such that 

∣∣−⇀a ∣∣ = 5,
∣∣−⇀b ∣∣ = 3, and the angle between

them is 150˚.

a) Draw a diagram to illustrate these vectors.

b) Determine −⇀a ↓ −⇀
b and 

−⇀
b ↓ −⇀a .



Self-Test

1. Knowledge/Understanding ABCD is a  
parallelogram. Find a single vector that is 
equivalent to each vector.

a)
−⇀
CD −

−⇀
DA

b)
−⇀
AD +

−⇀
DC +

−⇀
CP +

−⇀
PB

c)
−⇀
DC −

−⇀
CB

2. ABCD is a square. Determine 
−⇀
AB −

−⇀
BC +

−⇀
CD −

−⇀
DA.

3. The speed of a plane is 420 km/h and its heading is 140˚. 
A wind of 40 km/h is blowing on a bearing of 040˚. Determine 
the plane’s resultant velocity relative to the ground.

4. Application  Suppose −⇀a = [4, 6] and 
−⇀
b = [1, 2]. Determine:

a) A vector with unit length in the opposite direction to 
−⇀
b .

b) The components of a vector with the same magnitude as −⇀a making 
an angle of 60˚ with the positive x-axis.

c) −⇀a ↓ −⇀
b

5. If −⇀a = [k, 2] and 
−⇀
b = [7, 6], where k is a real number,

determine all values of k such that 
∣∣−⇀a −

−⇀
b

∣∣ = 5.

6. Thinking/Inquiry/Problem Solving ABCDEF is a hexagon
with three pairs of opposite sides parallel. If 

−⇀
AB = −⇀a and−⇀

BC =
−⇀
b , explain why 

−⇀
ED ,

−⇀
FE, and 

−⇀
FA can be written as −⇀

DE

F
c⇀

A B

CD

A B

CD

P
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scalar multiples, k−⇀a and l b , of these vectors. Express the

vectors represented by 
−⇀
AC and 

−⇀
FD in terms of −⇀a and 

−⇀
b . 

If AC is parallel to FD, determine a relationship between 
k and l.

7. Communication Draw a large diagram of any two 
non-collinear vectors −⇀a and 

−⇀
b tail-to-tail.

a) Draw each linear combination on the same diagram.

i) 1
4
−⇀a + 3

4

−⇀
b ii) 1

2
−⇀a + 1

2

−⇀
b iii) 3

4
−⇀a + 1

4

−⇀
b

b) Describe the pattern formed by the vectors −⇀a ,
−⇀
b , and the vectors in part a.

A B

C

b

a⇀

⇀



Vectors in Three Dimensions 2
Curriculum Expectations
By the end of this chapter, you will:

• Represent Cartesian vectors in 
three-space as ordered triples.

• Perform the operations of addition,
subtraction, scalar multiplication,
dot product, and cross product on
Cartesian vectors.

• Determine and interpret the dot product
and cross product of geometric vectors.

• Determine … the projection of a
geometric vector.

Photo not available due
to copyright issues.



The diagram below is a 2-dimensional representation of a 3-dimensional
classroom. The classroom has length 10 m, width 8 m, and height 4 m. 
Use this diagram as a reference for all of the exercises in the investigation.

8 mz

10 m

front wall

left wall

In Chapter 1, we limited our work with Cartesian vectors to vectors in the 
xy-plane. These vectors are represented by ordered pairs in a 2-dimensional
coordinate system called 2-space, or R2. In this chapter and in Chapter 3,
we will work with Cartesian vectors in three dimensions. These vectors are
represented by ordered triples in a 3-dimensional coordinate system called 
3-space, or R3.

To work with vectors in 3-space, you need to be able to visualize a 
3-dimensional coordinate system that is drawn on a 2-dimensional piece 
of paper. This investigation is designed to help you do this. Work with a 
partner to complete the investigation.

Investigation

Introduction to 3-space

Introduction to 3-space2.1
1. We need three coordinate axes to describe the positions of points in 3-space.

a) Which axis runs along the intersection of the floor and the left wall?

b) Which axis runs along the intersection of the floor and the front wall?

4 m

x

y
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c) Which axis runs along the intersection of the front wall and the 
left wall?

d) What point does the front left corner on the floor of the classroom
represent?

e) What angle do the three axes make with each other?

2. The three coordinate axes taken in pairs determine three planes called
coordinate planes. For example, the xy-plane is the plane that contains
the x- and y-axes. Which plane do each of these represent?

a) the floor

b) the front wall

c) the left wall

3. The three coordinate planes divide 3-space into 8 regions called octants.
The octant where x, y, and z are all positive is called the first octant. On
the diagram, visualize the negative x-, y-, and z-axes and imagine 7 other
rooms situated in the other 7 octants.

a) How many of these rooms are located on the same floor as the
classroom? Describe the location of each room, and state the signs
of x, y, and z in that room.

b) How many rooms are located on a different floor than the classroom?
Describe the location of each room, and state the signs of x, y, and z
in that room.

c) Which corner point do all 8 rooms share in common?

4. Points in 3-space are represented by an ordered triple of real numbers
(x, y, z). To locate the point (x, y, z) start at the origin. Move x units
along the x-axis, then y units parallel to the y-axis, then z units parallel
to the z-axis. Determine the coordinates of each point as accurately as
you can.

a) the 8 corners of the room

b) the centre of the classroom clock

c) the top left corner of the blackboard

d) the top of the teacher’s head

5. a) What are the y- and z-coordinates of every point on the x-axis?

b) What are the x- and z-coordinates of every point on the y-axis?

c) What are the x- and y-coordinates of every point on the z-axis?



6. a) What is the z-coordinate of every point on the xy-plane?

b) What is the y-coordinate of every point on the xz-plane?

c) What is the x-coordinate of every point on the yz-plane?

7. What condition is satisfied by the coordinates of every point on the plane:

a) containing the back wall?

b) containing the ceiling?

c) containing the right wall?

8. The diagram below shows the same classroom. Vector 
−⇀
OP is drawn

from the origin to the point P(10, 8, 4) on the ceiling that is farthest 

from the origin. Determine 
∣∣−⇀OP

∣∣ .

8 m

4 m

x

B

C

P

NA

y

z

10 m

front wall

left wall

α

β

γ

O

8 m

4 m

x

B

C

O
P

NA

y

z

10 m

front wall

left wall
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We plot a point P(x, y, z) in 3-space as shown below. It is customary to draw
the x-axis as though it were coming out of the paper towards the viewer, the 
y-axis to the right, and the z-axis upwards.

On this diagram, let −⇀v = [x, y, z].

To determine the magnitude of −⇀v , we apply the Pythagorean Theorem 
to �ONP and �OAN.

OP 2 = ON 2 + NP 2

= OA 2 + AN 2 + NP 2

= OA 2 + OB 2 + OC 2

= x2 + y2 + z2

Therefore, |−⇀v | =
√

x2 + y2 + z2.

To describe the direction of −⇀v , we use its direction angles:
α = ∠ POA, β = ∠ POB, γ = ∠ POC.

N

y

z

x

O

A(x, 0, 0)

B(0, y, 0)

P(x, y, z)

C(0, 0, z)

α
βγ

v

2.1 INTRODUCTION TO 3-SPACE 77

9. Use the diagram at the bottom of the previous page. The three angles 

α = ∠ POA, β = ∠ POB, and γ = ∠ POC formed by 
−⇀
OP and the

positive x-, y-, and z-axes respectively are called the direction angles

of 
−⇀
OP.

a) Determine each cosine. These are called the direction cosines of 
−⇀
OP.

i) cos α ii) cos β iii) cos γ
b) Use the results of part a to determine the three direction angles α,

β , and γ.

c) Determine cos2 α + cos2 β + cos2 γ.



In �POA, In �POB, In �POC,
∠ OAP = 90˚

cos α = x
|−⇀v |

∠ OBP = 90˚

cos β = y
|−⇀v |

∠ OCP = 90˚

cos γ = z
|−⇀v |

We can determine the direction angles from the values of the direction cosines.

The vector −⇀u = [3, 5, −2] is given.

a) Determine the magnitude of −⇀u .

b) Determine the direction angles of −⇀u .

Solution

a) −⇀u = [3, 5, −2]

|−⇀u | =
√

32 + 52 + (−2) 2

|−⇀u | =
√

38

The magnitude of −⇀u is 
√

38.

b) −⇀u = [3, 5, −2] and |−⇀u | =
√

38

cos α = 3√
38

.= 0.487

α .= 61˚

cos β = 5√
38

.= 0.811

β .= 36˚

cos γ = −2√
38

.= −0.324

γ .= 109˚
The direction angles of −⇀u are approximately 61˚, 36˚, and 109˚.

Example 1

Magnitude and Direction of Cartesian Vectors in 3-space
Let −⇀v = [x, y, z] be any non-zero vector.

The magnitude of −⇀v is |−⇀v | =
√

x2 + y2 + z2.

The direction of −⇀v is specified by its direction angles α, β , and γ. These
are the angles formed by −⇀v and the positive x-, y-, and z-axes
respectively. Therefore, 0˚ ≤ α ≤ 180˚, 0˚ ≤ β ≤ 180˚, and
0˚ ≤ γ ≤ 180˚.

To determine the direction angles, use the direction cosines of −⇀v :

cos α = x
|−⇀v | cos β = y

|−⇀v | cos γ = z
|−⇀v |

The direction cosines satisfy the following condition (see exercise 16). 

cos2 α + cos2 β + cos2 γ = 1

Take Note
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In R2, we found the components of a vector whose tail is not at the origin 
by subtracting the coordinates of its tail from the coordinates of its head. 
This procedure also applies to vectors in R3.

We can use vectors to solve problems involving figures that we visualize on a
coordinate grid in 3-space. In many of these problems a diagram is useful, but 
it is not necessary to plot the points accurately on a grid.

Quadrilateral ABCD has vertices A(–3, 4, –1), B(5, 0, 3), C(12, –2, –2),
and D(4, 2, –6). Show that ABCD is a parallelogram.

Solution

Sketch the quadrilateral.

Determine the vectors forming the sides of the quadrilateral.
−⇀
AB = [5 − (−3), 0 − 4, 3 − (−1)]

= [8, −4, 4]
−⇀
DC = [12 − 4, −2 − 2, −2 − (−6)]

= [8, −4, 4]

Therefore, sides AB and DC are parallel.

B(5, 0, 3)

C(12, −2, −2)

A(−3, 4, −1)

D(4, 2, −6)

Example 2

The Vector in 3-space with Given Head and Tail
If A(a1, a2, a3) and B(b1, b2, b3) are any two points, then:

−⇀
AB = [b1 − a1, b2 − a2, b3 − a3]

The magnitude of this vector is:∣∣−⇀AB
∣∣ =

√
(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2

Take Note
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−⇀
AD = [4 − (−3), 2 − 4, −6 − (−1)]

= [7, −2, −5]
−⇀
BC = [12 − 5, −2 − 0, −2 − 3]

= [7, −2, −5]
Therefore, sides AD and BC are parallel.

Since both pairs of opposite sides are parallel, quadrilateral ABCD 
is a parallelogram.

Alternate representation of Cartesian vectors
As in 2-space, we can represent Cartesian vectors in 3-space using the unit 

vectors 
−⇀
i = [1, 0, 0] ,

−⇀
j = [0, 1, 0] , and 

−⇀
k = [0, 0, 1] along the coordinate

axes. For example, the vector −⇀u in Example 1 can be written as:
−⇀u = 3

−⇀
i + 5

−⇀
j − 2

−⇀
k .

1. Suppose you start at the origin, move along the x-axis a distance of 4 units
in the positive direction, and then move downwards a distance of 3 units.

a) Draw a diagram to represent this situation. What are the coordinates 
of your position?

b) Write a vector to represent your position relative to the origin.

c) Determine the length of the vector in part b.

d) Determine the direction cosines of the vector in part b.

e) Determine the direction angles of the vector.

B

Exercises2.1

• Why is a diagram needed to solve this problem?

• Why is it not necessary to draw the diagram on a 3-dimensional grid?

• Can this problem be solved in a different way?

Something to Think About
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2. Consider these points: P(2, 3, 7), Q(–5, 1, –2), R(0, –3, 0), and S(0, 5, 3).
Explain your answer to each question.

a) Which point lies on the y-axis?

b) Which point lies on the yz-plane?

c) Which point lies below the xy-plane?

d) Which point is closest to the xz-plane?

e) What is the distance from P to the xy-plane?

3. Knowledge/Understanding We can draw the point P(3, 5, 4) as one
corner of a box with one corner at O(0, 0, 0) and P at the diagonally
opposite corner (below left). The faces of the box are parallel to the
coordinate planes. Draw the diagram. Use your diagram to determine:

a)
∣∣−⇀OP

∣∣
b) The direction cosines of 

−⇀
OP.

c) The direction angles of 
−⇀
OP.

d) Choose one of the coordinate planes. Let N be the corner of the box that 

lies on the plane you chose. Repeat parts a, b, and c for the vector 
−⇀
ON.

4. The diagram above right shows the point Q(–4, 2, –3 ) as the corner of a
box. The faces of the box are parallel to the coordinate planes. Draw the
diagram. Use your diagram to determine:

a)
∣∣−⇀OQ

∣∣
b) The direction cosines of 

−⇀
OQ.

c) The direction angles of 
−⇀
OQ.

d) Choose one of the coordinate planes. Let N be the corner of the box that

lies on the plane you chose. Repeat parts a, b, and c for the vector 
−⇀
ON.

5. Communication For every point in space, is it possible to draw a box like
the ones in exercises 3 and 4? Use diagrams to explain your answer.

y

z

x

P(3, 5, 4)

O O
y

z

x

Q(−4, 2, −3)
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6. Graph each vector. Determine its length, its direction cosines, and its
direction angles.

a) −⇀a = [1, 2, 3] b)
−⇀
b = [0, 1, −2]

c) −⇀c = [2, −2, 0] d)
−⇀
d = [−4, 0, 0]

e) −⇀e = 3
−⇀
i − 4

−⇀
j −

−⇀
k f)

−⇀
f = −2

−⇀
i + 2

−⇀
j − 2

−⇀
k

7. The coordinates of the head and tail of a vector,
−⇀
PQ, are given. Represent 

−⇀
PQ as an ordered triple and determine 

∣∣−⇀PQ
∣∣ .

a) P(2, –1, 4), Q(1, –1, 2)

b) P(4, –2, 3), Q(2, 4, –1)

c) P(2, 3, –1), Q(4, 0, 2)

d) P(3, 0, –4), Q(1, 1, 1)

8. The vector 
−⇀
AB = [3, 2, −1] has its tail at the point A(6, 9, –2). Determine

the coordinates of B.

9. The vector 
−⇀
PQ = [7, 6, −3] has its head at the point Q(–2, 1, 3). Determine

the coordinates of P.

10. Triangle ABC has vertices A(1, 2, 3), B(4, 0, 5) and C(3, 6, 4).

a) Calculate the lengths of the sides of �ABC.

b) Show that �ABC is a right triangle.

11. Show that �ABC with vertices A(1, 2, 3), B(1, 3, 4), and 
C(0, 3, 3) is equilateral.

12. Thinking/Inquiry/Problem Solving

a) The points A(1, –2, 4), B(3, 5, 7), C(4, 6, 8) are three vertices of
parallelogram ABCD. Determine the coordinates of vertex D.

b) Three vertices of a parallelogram have coordinates (2, –5, 1), (4, 1, –2),
and (0, 3, 7). Determine all possible coordinates for the fourth vertex.

c) Explain why there is only one answer in part a but three possible answers
in part b.

13. Suppose point P lies on the x-axis. What are the direction angles of 
−⇀
OP?

14. Suppose point P lies on the xy-plane. State as much as you can about the 

direction angles of 
−⇀
OP.

15. Application In 2-space, the direction of a vector is described using a single
angle, such as a bearing or a rotation angle. Explain how direction angles
could also be used to describe the direction of a vector in 2-space. Use some
examples to illustrate your explanation.
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16. Let 
−⇀
OP be any vector with direction angles α, β , and γ.

a) Prove that cos2 α + cos2 β + cos2 γ = 1 .

b) If you know two direction angles of a vector, explain how you could
determine the third direction angle. Use an example to illustrate your
explanation.

17. Suppose the direction angles of the vector 
−⇀
OP are all equal.

a) Determine the direction angles of 
−⇀
OP.

b) Draw a diagram to illustrate the situation.

18. Use the method on pages 36 and 37 in Section 1.5 to prove that −⇀
AB = [b1 − a1, b2 − a2, b3 − a3] given that A(a1, a2, a3) and B(b1, b2, b3)
are two points in 3-space.

19. Determine the head of a vector with length 3, and in the same direction as−⇀a = [−3, −4, 12].

20. The vector −⇀v has length 10, positive and equal x- and y-components,
and a z-component of 4. Determine −⇀v .

21. Determine the coordinates of the point P on the y-axis 
that is equidistant from A(1, 6, −5) and B(5, 4, −7).

22. Vectors 
−⇀
OP and 

−⇀
OQ are not collinear. The sum of 

the direction angles of each vector is 180˚. Draw
diagrams to illustrate possible positions of P and Q.

23. Let 
−⇀
OP be any vector with direction angles α, β ,

and γ. Then sin α, sin β, and sin γ can be called the

direction sines of 
−⇀
OP.

a) Determine sin2 α + sin2 β + sin2 γ .

b) Explain why the direction sines are not used for
describing the direction of a vector.

C
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In Chapter 1 we defined a vector as a quantity that has both magnitude and
direction. We represented vectors in the plane, or 2-space, using ordered pairs,
and we developed the operations of addition, subtraction, scalar multiplication,
and dot products on these vectors. It is reasonable to expect that these operations
can be extended to vectors in 3-space, which are represented by ordered triples.
The operations are the same as in 2-space, except there are 3 components to be
considered instead of 2.

Given the vectors −⇀u = [1, 3, −2] and −⇀v = [3, −1, 4] , determine:

a) −⇀u + −⇀v
b) 2−⇀u − 3−⇀v

Example 1

Operations on Cartesian Vectors
If −⇀u = [x1, y1, z1] and −⇀v = [x2, y2, z2], then:

−⇀u + −⇀v = [x1 + x2, y1 + y2, z1 + z2]
−⇀u − −⇀v = [x1 − x2, y1 − y2, z1 − z2]

k−⇀u = [kx1, ky1, kz1]

Take Note

Operations on Cartesian Vectors in 3-space2.2
Solution

a) −⇀u + −⇀v = [1, 3, −2] + [3, −1, 4]
= [1 + 3, 3 − 1, −2 + 4]
= [4, 2, 2]

b) 2−⇀u − 3−⇀v = 2[1, 3, −2] − 3[3, −1, 4]
= [2, 6, −4] + [−9, 3, −12]
= [−7, 9, −16]

Testing if two vectors are collinear
Two vectors are defined to be collinear if one is a scalar multiple of the other.
We can often determine this by inspection. For example, the vectors 
−⇀a = [4, −3, 2] and 

−⇀
b = [8, −6, 4] are collinear because each component 

of 
−⇀
b is 2 times the corresponding component of −⇀a . Hence 

−⇀
b = 2−⇀a , which 

shows that −⇀a and 
−⇀
b are collinear.
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Determine if the vectors −⇀a = [6, −21, 9] and 
−⇀
b = [−10, 35, −15] are

collinear.

Solution

Method 1

Attempt to express one of the vectors as a scalar multiple of the other. 

Choose either vector, say 
−⇀
b .

Let 
−⇀
b = s−⇀a ➀

[−10, 35, −15] = s[6, −21, 9]
[−10, 35, −15] = [6s, −21s, 9s]

Since these vectors are equal, their components are equal.
6s = −10

s = −5
3

−21s = 35

s = −5
3

9s = −15

s = −5
3

Since the solutions of these equations are all −5
3

, then 
−⇀
b = −5

3
−⇀a .

Therefore, −⇀a and 
−⇀
b are collinear.

Method 2

The components of each vector have a common factor. Hence,−⇀a = 3[2, −7, 3]
−⇀
b = 5[−2, 7, −3]
−⇀
b = −5[2, −7, 3]

Since −⇀a and 
−⇀
b are both multiples of the same vector, [2, –7, 3], they are

both collinear with this vector, and with each other.

Method 3

Form the ratios of the corresponding components of −⇀a and 
−⇀
b .−⇀a = [6, −21, 9] and 

−⇀
b = [−10, 35, −15]

6
−10

= −3
5

−21
35

= −3
5

9
−15

= −3
5

Since each ratio equals −3
5

, therefore 
−⇀
b = −5

3
−⇀a .

Therefore, −⇀a and 
−⇀
b are collinear.

• Method 1 is a direct application of the definition of collinear vectors,
and will be extended in the next example. Methods 2 and 3 are more
efficient methods.

Something to Think About

Example 2
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Testing if three vectors are coplanar
In Example 1, we determined a linear combination of the vectors−⇀u = [1, 3, −2] and −⇀v = [3, −1, 4] . Any two non-collinear vectors in R3

determine a plane, and all linear combinations of these vectors lie on this plane
(see exercise 6). There are many other vectors in 3-space that do not lie on this
plane. An important problem is to determine whether or not three given vectors
lie on the same plane. If they do, they are called coplanar.

To determine if three non-collinear vectors are coplanar, we try to express
any one of them as a linear combination of the other two.

Determine if the vectors −⇀a = [1, 2, 3] ,
−⇀
b = [2, −1, 3] , and−⇀c = [8, 1, 15] are coplanar.

Solution

Attempt to express one of the vectors as a linear combination of the other
two vectors. Choose any one of the vectors, say, −⇀c .

Let −⇀c = s−⇀a + t
−⇀
b ➀

[8, 1, 15] = s[1, 2, 3] + t[2, −1, 3]
[8, 1, 15] = [s + 2t, 2s − t, 3s + 3t]

Since these vectors are equal, their components are equal.
s + 2t = 8
2s − t = 1

3s + 3t = 15
s + t = 5

➁

➂

or ➃

Choose any two of these equations and solve for s and t. Then check 
to see if the solution satisfies the third equation. Choose equations 
➁ and ➂ .

s + 2t = 8 ➁

2s − t = 1 ➂

• Equations ➁ , ➂ , and ➃ form a system of 3 linear equations in 
2 variables. Such a system may or may not have a solution. If 
there is a solution, we say that the system is consistent. If there 
is no solution, the system is inconsistent.

Something to Think About

Example 3

The problem of
determining if
three vectors are
coplanar will have
great significance
in Chapter 3.
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Copy ➁ : s + 2t = 8
4s − 2t = 2

5s = 10
s = 2

➂ × 2:
Add:

Substitute s = 2 in ➁ :
2 + 2t = 8

t = 3

The solution of the system formed by equations ➁ and ➂ is s = 2, t = 3. 

If the vectors −⇀a ,
−⇀
b , and −⇀c are coplanar, these values of s and t will satisfy

equation ➃ .

Substitute s = 2 and t = 3 in ➃ :
L.S. = s + t

= 2 + 3
= 5

R.S. = 5

Since the values of s and t that satisfy equations ➁ and ➂ also satisfy
equation ➃ , substitute these values in equation ➀ to obtain:
−⇀c = 2−⇀a + 3

−⇀
b

Therefore, −⇀c is a linear combination of −⇀a and 
−⇀
b , so the vectors −⇀a ,

−⇀
b ,

and −⇀c are coplanar.

The diagram below shows the situation in Example 3. The vectors 
−⇀a = [1, 2, 3] ,

−⇀
b = [2, −1, 3] , and −⇀c = [8, 1, 15] lie on a plane containing 

a grid of parallelograms determined by −⇀a and 
−⇀
b . Their heads are the points

A(1, 2, 3), B(2, –1, 3), and C(8, 1, 15). Point C can be reached by starting at the 

origin and going in the direction of −⇀a and 2 times its length to M, then going 

in the direction of 
−⇀
b and 3 times its length to C.

D

B
A

C

M

y

z

x

⇀
b

⇀
d

⇀c

⇀a
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In Example 3, suppose the third vector had been 
−⇀
d = [8, 1, 5] . Then equation

➃ would have been 3s + 3t = 5. The values of s and t found by solving 

equations ➁ and ➂ do not satisfy this equation. This means that 
−⇀
d cannot be 

expressed as a linear combination of −⇀a and 
−⇀
b , so the vectors −⇀a ,

−⇀
b , and 

−⇀
d

are not coplanar. This situation is also shown on the diagram on the previous 

page. The head of 
−⇀
d = [8, 1, 5] is D(8, 1, 5), which does not lie on the plane 

determined by −⇀a and 
−⇀
b .

Linear dependence and independence

In Example 2, we showed that 
−⇀
b = −5

3
−⇀a , which means that −⇀a and 

−⇀
b are 

collinear. In Example 3, we showed that −⇀c = 2−⇀a + 3
−⇀
b , which means that 

−⇀a ,
−⇀
b , and −⇀c are coplanar. In both examples, we say that the vectors are

linearly dependent. This is a general term that means “collinear” in R2 and
“coplanar” in R3. Algebraically, it means that there is a simple equation that 

relates the vectors (having the form 
−⇀
b = s−⇀a in R2 and −⇀c = s−⇀a + t

−⇀
b in R3).

Vectors that are not linearly dependent are linearly independent.

1. Given −⇀u = [5, −1, 3] and −⇀v = [−1, 2, −4] , determine:

a) −⇀u + −⇀v b) −⇀u − −⇀v c) −−⇀u
d) 2−⇀u e) −⇀u + 2−⇀v f) 3−⇀u − 2−⇀v

2. If −⇀a = [2, 3, −2] and 
−⇀
b = [6, 4, −1] , determine:

a) −⇀a +
−⇀
b b) −⇀a −

−⇀
b c) −2−⇀a

d) 0.5
−⇀
b e) −−⇀a −

−⇀
b f) 4−⇀a − 3

−⇀
b

3. If −⇀u = 3
−⇀
i + −⇀

j − 2
−⇀
k and −⇀v = −−⇀

i + 2
−⇀
j + 3

−⇀
k , determine:

a) −⇀u + −⇀v b) −⇀u − −⇀v c) 2−⇀u + −⇀v
d) −⇀u − 2−⇀v e) 5−⇀u + 4−⇀v f) −2−⇀u + 3−⇀v

4. Thinking/Inquiry/Problem Solving Let −⇀u = [1, −2, 3] and−⇀v = [2, 2, 2] . Suppose you were to graph the following vectors in R3

with their tails at the origin.

… , −⇀u − 3−⇀v , −⇀u − 2−⇀v , −⇀u − −⇀v , −⇀u , −⇀u + −⇀v , −⇀u + 2−⇀v , −⇀u + 3−⇀v , …

Describe how the heads of the vectors would be related.

A

Exercises2.2



5. In Example 3, we chose −⇀c and let −⇀c = s−⇀a + t
−⇀
b . Then we found that−⇀c = 2−⇀a + 3

−⇀
b . What result would we have obtained if we had chosen:

a)
−⇀
b instead of −⇀c ?

b) −⇀a instead of −⇀c ?

6. a) How can we be certain that any two non-collinear vectors determine 
a plane?

b) How do we know that all linear combinations of these vectors lie in 
this plane?

7. Find a vector that has the same direction as −⇀a = [2, −2, 1] and:

a) is 4 times as long as −⇀a .

b) is half as long as −⇀a .

c) has length 6.

d) has length 1.

8. Determine the direction angles of the vectors in exercise 7.

9. Find two different vectors that are collinear with −⇀u = [3, 2, −1] and:

a) are twice as long as −⇀u .

b) have length 1.

10. Any vector that has length 1 is called a unit vector. Find two different unit
vectors that are collinear with each vector.

a) −⇀u = [4, 3, 0] b) −⇀u = [−4, 2, 4]

c) −⇀u = [−1, 4, 1] d) −⇀u = [2, −3, 5]

11. Determine if the given vectors are collinear.

a) −⇀a = [2, 5, −3] ,
−⇀
b = [−4, −10, −6]

b) −⇀a = [−14, −21, 35],
−⇀
b = [−6, −9, 15]

c) −⇀a = [8, 12, −6],
−⇀
b = [−12, −18, 9]

12. Refer to exercise 11. Determine the direction angles of the vectors that 
are collinear.

13. a) Describe how you can determine if three given points are collinear.

b) Test these points for collinearity.
i) P(2, 1, −3), Q(−4, 5, −1), R(5, −1, −4)

ii) J(2, 6, 2), K(−1, 3, 0), L(8, 1, −2)
iii) A(0, 2, −1), B(2, 0, −5), C(−3, 5, 5)

B
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14. a) Express the vector −⇀w = [8, −9, 3] as a linear combination of the vectors−⇀u = [1, 3, 0] and −⇀v = [−2, 5, −1] .

b) Express −⇀u as a linear combination of −⇀v and −⇀w .

c) Express −⇀v as a linear combination of −⇀u and −⇀w .

15. Knowledge/Understanding Determine if the following vectors are coplanar.

a) −⇀a = [3, −1, 4] ,
−⇀
b = [−2, 3, 1] , −⇀c = [8, 2, 18]

b) −⇀a = [5, 0, −6] ,
−⇀
b = [3, −2, 0] , −⇀c = [6, 1, −9]

c) −⇀a = [2, 7, −1] ,
−⇀
b = [5, −3, 2] , −⇀c = [9, 11, 2]

16. Communication

a) Explain what it means for three vectors in 3-space to be coplanar.

b) Explain why three given vectors in 3-space may or may not be coplanar.

c) Describe how you can determine if three given vectors in 3-space are
coplanar. Make up an example (different from those in this section) to
illustrate your method.

17. Determine if the following vectors are linearly dependent.

a) −⇀u = [4, 1, 0] , −⇀v = [−8, 5, 2] , −⇀w = [0, 7, 2]

b) −⇀u = [−1, 3, 4] , −⇀v = [2, 1, 5] , −⇀w = [6, −3, 2]

c) −⇀u = [6, 1, −2] , −⇀v = [−2, 5, 3] , −⇀w = [30, −11, −17]

18. Application In general, four points in 3-space may or may not lie on the
same plane.

a) Describe how you could use vectors to determine if four given points are
coplanar.

b) Use your method to determine if the following points are coplanar.
i) A(3, 1, 0), B(2, –3, 1), C(–1, 0, 4), D(5, –6, –2)

ii) P(–2, 3, 0), Q(0, 2, 1), R(–1, 0, 3), S(2, 6, –3)
iii) J(4, 1, 3), K(5, 3, 5), L(7, –3, 2), M(–1, 1, 1)

19. Let −⇀a and −⇀m be non-collinear vectors in R3. Suppose you were to graph
vectors of the form  −⇀p = −⇀a + t−⇀m with their tails at the origin, where t is
any scalar. What common property would the heads of these vectors have?
Explain.

20. Let −⇀a , −⇀m , and −⇀n be non-collinear vectors in R3, where −⇀m and −⇀n
are not collinear. Suppose you were to graph vectors of the form−⇀p = −⇀a + s−⇀m + t−⇀n with their tails at the origin, where s and t are any
scalars. What common property would the heads of these vectors have?
Explain.

C

90 CHAPTER 2 VECTORS IN THREE DIMENSIONS



In Section 1.7, we defined the dot product of two vectors −⇀a and 
−⇀
b as 

−⇀a •
−⇀
b =

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ , where θ is the angle between −⇀a and 
−⇀
b . Since this

definition was given for geometric vectors, we can use it for vectors in 3-space.

In Section 1.7, we also showed that for the vectors −⇀a = [a1, a2] and −⇀
b = [b1, b2] in 2-space, −⇀a •

−⇀
b = a1b1 + a2b2. Therefore, we expect that 

for the vectors −⇀a = [a1, a2, a3] and 
−⇀
b = [b1, b2, b3] in 3-space:

−⇀a •
−⇀
b = a1b1 + a2b2 + a3b3

This result can be derived the same way as the corresponding result in 
2-space was derived in Chapter 1 (see exercise 20 on page 98).

Dot Products in 3-Space
Let −⇀a = [a1, a2, a3] and 

−⇀
b = [b1, b2, b3] be any two non-zero 

vectors in 3-space arranged tail-to-tail. Let θ represent the angle 

between −⇀a and 
−⇀
b .

−⇀a •
−⇀
b =

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ
−⇀a •

−⇀
b = a1b1 + a2b2 + a3b3

−⇀a •
−⇀
b is a real number.

Take Note

The Dot Product in 3-space2.3
We can use dot products to calculate the angle between any two non-zero
vectors in 3-space.

The vectors −⇀u = [−3, 4, 2] and −⇀v = [2, −1, 3] are given.

a) Determine −⇀u • −⇀v .

b) Calculate the angle between −⇀u and −⇀v .

Solution

a) −⇀u • −⇀v = [−3, 4, 2] • [2, −1, 3]
= (−3)(2) + 4(−1) + 2(3)
= −6 − 4 + 6
= −4

Example 1
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b) Use the formula −⇀u • −⇀v = |−⇀u ||−⇀v | cos θ .

cos θ =
−⇀u • −⇀v
|−⇀u ||−⇀v |

= −4√
(−3)2 + 42 + 22

√
22 + (−1)2 + 32

= −4√
29

√
14

.= −0.199

θ .= 101˚

The angle between −⇀u and −⇀v is approximately 101˚.

Triangle ABC has vertices A(2, 3, 1),
B(4, 0, –2) and C(3, 6, –4). Calculate ∠ B.

Solution

Determine vectors 
−⇀
BA and 

−⇀
BC.−⇀

BA = [2 − 4, 3 − 0, 1 − (−2)]
−⇀
BA = [−2, 3, 3]

and
−⇀
BC = [3 − 4, 6 − 0, −4 − (−2)]
−⇀
BC = [−1, 6, −2]

cos ∠ B =
−⇀
BA •

−⇀
BC∣∣−⇀BA

∣∣∣∣−⇀BC
∣∣

= [−2, 3, 3] • [−1, 6, −2]√
(−2)2 + 32 + 32

√
(−1)2 + 62 + (−2)2

= (−2)(−1) + (3)(6) + (3)(−2)√
22

√
41

= 14√
22

√
41

.= 0.466

∠ B
.= 62˚

• Why is a diagram useful for solving the problem in Example 2?

Something to Think About

C(3, 6, −4)

B(4, 0, −2)A(2, 3, 1)

Example 2
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In Section 1.8, we defined the projection of a vector on a vector,

and showed that the projection of −⇀a on 
−⇀
b is:

−⇀a ↓ −⇀
b =

(−⇀a •
−⇀
b

−⇀
b •

−⇀
b

)−⇀
b where 

−⇀
b ≠ 0

Since we derived this formula using geometric vectors, we can
use it for vectors in 3-space.

Given −⇀u = [3, −2, 4] and −⇀v = [−1, 5, 2] :

a) Determine −⇀u ↓ −⇀v , and illustrate the result on a diagram.

b) Determine |−⇀u ↓ −⇀v | .

Solution

a) −⇀u ↓ −⇀v is a scalar multiple of −⇀v . The scalar is:
−⇀u • −⇀v
−⇀v • −⇀v = [3, −2, 4] • [−1, 5, 2]

[−1, 5, 2] • [−1, 5, 2]

= (3)(−1) + (−2)(5) + (4)(2)
(−1)2 + 52 + 22

= −1
6

Since the result is negative, the direction 
of −⇀u ↓ −⇀v is opposite to the direction 
of −⇀v . 
−⇀u ↓ −⇀v =

( −⇀u • −⇀v
−⇀v • −⇀v

)−⇀v

= −1
6

[−1, 5, 2]

=
[

1
6

, −5
6

, −1
3

]

b) |−⇀u ↓ −⇀v | represents the magnitude of −⇀u ↓ −⇀v . Use the result 

of part a to determine this magnitude.

|−⇀u ↓ −⇀v | =
√(

1
6

)2
+

(
−5

6

)2
+

(
−1

3

)2

|−⇀u ↓ −⇀v | =
√

5
6

• There is another way to calculate the magnitude of |−⇀u ↓ −⇀v |
(see exercise 17).

Something to Think About

y

z

x

⇀v

⇀u

⇀u ↓ ⇀v

O

Example 3

⇀a

⇀
b

⇀a ↓ ⇀
b

θ



94 CHAPTER 2 VECTORS IN THREE DIMENSIONS

Two non-collinear vectors in 3-space define a plane. An important problem 
is to find a vector that is perpendicular to the plane. There are infinitely many
such vectors, but they are all scalar multiples of one another, as illustrated in 
the diagram.

In many problems, it is sufficient to find only one vector that is perpendicular to
the plane determined by two non-collinear vectors. The method for finding such
a vector is illustrated in the following example.

The vectors −⇀a = [2, 1, −1] and 
−⇀
b = [1, 2, −3] are given. Determine 

a vector that is perpendicular to both −⇀a and 
−⇀
b . Check the result.

Solution

Let −⇀n = [x, y, z] represent a vector that is perpendicular to both −⇀a and −⇀
b . Then the dot products −⇀a • −⇀n and 

−⇀
b • −⇀n are both equal to 0.

−⇀a • −⇀n = [2, 1, −1] • [x, y, z]
−⇀a • −⇀n = 2x + y − z

and
−⇀
b • −⇀n = [1, 2, −3] • [x, y, z]
−⇀
b • −⇀n = x + 2y − 3z

Therefore, 2x + y − z = 0 Therefore, x + 2y − 3z = 0

Find values of x, y, and z such that:
2x + y − z = 0 ➀
x + 2y − 3z = 0 ➁

• Equations ➀ and ➁ form a system of 2 linear equations in 
3 variables. Such a system usually has infinitely many solutions. 
We will determine all of these solutions in Chapter 3. Here,
we only require one of the solutions.

Something to Think About

Example 4

y

z

x

⇀a

⇀
b

O
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Each set of values of x, y, and z that satisfies these two equations corresponds 

to one of the vectors that is perpendicular to both −⇀a and 
−⇀
b . Only one set of

values is required, and it does not matter how these values are found. 
If z = 1, then:

2x + y = 1 ➂
x + 2y = 3 ➃

Solve the system.
➂ × 2: 4x + 2y = 2

x + 2y = 3
3x = −1

x = −1
3

Copy ➂ : 2x + y = 1
2x + 4y = 6

−3y = −5

y = 5
3

Copy ➃ : ➃ × 2:
Subtract: Subtract:

A vector that is perpendicular to both −⇀a = [2, 1, −1] and 
−⇀
b = [1, 2, −3]

is −⇀n =
[
−1

3
, 5

3
, 1

]
.

Check
−⇀n • −⇀a =

[
−1

3
, 5

3
, 1

]
• [2, 1, −1]

= −2
3

+ 5
3

− 1

= 0

and −⇀n •
−⇀
b =

[
−1

3
, 5

3
, 1

]
• [1, 2, −3]

= −1
3

+ 10
3

− 3

= 0

Therefore, the vector 
[
−1

3
, 5

3
, 1

]
is perpendicular to both −⇀a = [2, 1, −1]

and 
−⇀
b = [1, 2, −3] .

In Example 4, we could have avoided fractions in the Check by using the vector
[−1, 5, 3], which is 3 times as long as −⇀n .

1. Calculate the dot product of each pair of vectors.

a) −⇀u = [3, 5, −2] , −⇀v = [4, −1, 2]

b) −⇀u = [3, −1, 5] , −⇀v = [2, 1, −1]

c) −⇀a = [2, 2, 3] ,
−⇀
b = [−1, 0, 3]

d) −⇀a = [−1, 6, 4] ,
−⇀
b = [−5, −3, 1]

A

Exercises2.3
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2. The vectors 
−⇀
i = [1, 0, 0] ,

−⇀
j = [0, 1, 0] ,

and 
−⇀
k = [0, 0, 1] define the unit cube

shown in the diagram. Determine each dot
product in two different ways.

a)
−⇀
i •

−⇀
i b)

−⇀
j •

−⇀
j

c)
−⇀
k •

−⇀
k d)

−⇀
i •

−⇀
j

e)
−⇀
j •

−⇀
k f)

−⇀
k •

−⇀
i

3. Calculate the angle between the 
given vectors.

a) −⇀a = [1, 0, −1] ,
−⇀
b = [1, 1, 1]

b) −⇀a = [2, 2, 3] ,
−⇀
b = [−1, 0, 3]

c) −⇀a = [1, 4, 1] ,
−⇀
b = [5, 0, 5]

d) −⇀a = [6, 2, −1] ,
−⇀
b = [−2, −4, 1]

4. Calculate the angles in each triangle with the given vertices.

a) A(−3, 1, 0), B(−3, 5, −4), C(–1, 3, −4)

b) P(2, 3, 11), Q(5, −1, −1), R(−2, 3, 8)

c) R(−1, 0, 2), S(2, 1, −1), T(1, −2, 2)

5. Only one of the vectors below is perpendicular to the vector 
[8, 3, −2]. Which vector is it? Explain.

[−2, 1, 3] [−1, 6, 5] [1, −1, 3]

6. Determine any vector that is perpendicular to each vector.

a) [1, 2, 3] b) [2, 2, 2]

c) [4, −5, 2] d) [0, 3, −4]

7. Determine any vector that is perpendicular to both given vectors. 
Check each result.

a) −⇀u = [0, 2, 1], −⇀v = [1, −1, 3]

b) −⇀u = [3, −1, 4] , −⇀v = [1, 0, −1]

c) −⇀u = [1, 1, 1] , −⇀v = [1, 2, 3]

d) −⇀u = [−2, 3, 1] , −⇀v = [1, −2, 4]

8. Knowledge/Understanding Check your results in each part.

a) Determine any vector that is perpendicular to the vector −⇀u = [−2, 6, 1] .

b) Determine any vector that is perpendicular to the vector −⇀u = [3, 0, 2]
and to the vector −⇀v = [1, −1, 3] .

B

x

y

z

⇀
i

⇀
j

⇀
k

O
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9. Quadrilateral ABCD has vertices A(2, 4, –1), B(7, 3, –8),
C(6, 10, –13), and D(1, 11, −6).

a) Show that the quadrilateral is a rhombus.

b) Determine the interior angles of the quadrilateral.

c) Show that the diagonals AC and BD are perpendicular.

10. Points O(0, 0, 0), A(2, 2, 0), B(6, −2, −3) and C(4, −4, −3) are the vertices 
of a quadrilateral.

a) Determine the angle at each vertex.

b) Use the result of part a to identify the quadrilateral.

11. Find the value(s) of k so that the vectors in each pair are perpendicular.

a) −⇀a = [0, k, −2],
−⇀
b = [2, −1, 2]

b) −⇀a = [−1, −3, k],
−⇀
b = [5, k, 1]

c) −⇀a = [k, −3, 2],
−⇀
b = [k, k, −5]

12. Determine x and y so that −⇀a = [x, y, 1] is perpendicular to both −⇀
b = [3, 1, 2] and −⇀c = [1, 2, 3] .

13. Communication Refer to Example 4. To find a set of values of x, y, and z
that satisfy equations ➀ and ➁ , we began by letting z = 1.

a) Find other sets of values of x, y, and z that satisfy these equations 
by letting:
i) x = 1 ii) y = 1 iii) z = 3 iv) z = 6

b) How are the sets of values you found related? Explain.

c) What happens if you let z = 0? Explain.

14. If −⇀a = [1, 2, 3] and 
−⇀
b = [4, −1, 2] , evaluate:

a) −⇀a •
−⇀
b b) −⇀a • (−⇀a +

−⇀
b )

c) (−⇀a +
−⇀
b ) • (−⇀a −

−⇀
b ) d) 4−⇀a • (2−⇀a + 3

−⇀
b )

15. Let −⇀a = [3, −1, 1] ,
−⇀
b = [2, −3, 0] , and −⇀c = [−5, 4, 7] . 

Determine:

a) −⇀a •
(−⇀

b + −⇀c )
b)

(−⇀a +
−⇀
b

)
• −⇀c

c)
(−⇀a +

−⇀
b

)
•
(−⇀a + −⇀c )

d)
(−⇀a +

−⇀
b

)
•
(−⇀a −

−⇀
b

)
16. The rectangular box shown at the right has dimensions 

2 units by 1 unit by 1 unit.

a) Determine ∠ CAB.

b) Determine 
∣∣−⇀AB ↓ −⇀

AC
∣∣ .

A B

C

1

1
2

Rhombus

Student Reference
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17. Application

a) In the diagram at the right, θ is acute. Show that

|−⇀u ↓ −⇀v | =
−⇀u • −⇀v

|−⇀v | .

b) Show how to modify the formula in part a so that it 
also applies if θ is obtuse.

c) The vectors −⇀u = [3, −2, 4] and −⇀v = [−1, 5, 2]
are given. Use the formula in part a to calculate 

|−⇀u ↓ −⇀v | . Compare your answer with the answer in 

Example 3, and show that the two answers are equal.

18. Determine −⇀u ↓ −⇀v and 
∣∣−⇀u ↓ −⇀v ∣∣ for each of the following.

a) −⇀u = [1, 1, −4] , −⇀v = [2, −1, 3]

b) −⇀u = [−4, 1, 3] , −⇀v = [1, −2, 2]

c) −⇀u = [1, 2, 2] , −⇀v = [−1, 3, 2]

d) −⇀u = [−1, 1, 1] , −⇀v = [−2, 1, −1]

19. The points P(–2, 1, 6), Q(3, 1, –2), R(–3, 1, 4), and S(2, –1, 2) are given. 

Determine the projection of 
−⇀
PQ on 

−⇀
RS.

20. The vectors −⇀u = [x1, y1, z1] and −⇀v = [x2, y2, z2] are given. The dot

product −⇀u • −⇀v is defined as −⇀u • −⇀v = |−⇀u ||−⇀v | cos θ where θ is the

angle between −⇀u and −⇀v . Use the method on page 53 in Section 1.7 to 

show that −⇀u • −⇀v = x1x2 + y1y2 + z1z2 .

21. Thinking/Inquiry/Problem Solving The vector −⇀u = [1, −2, 1] is given.

a) Determine three different non-collinear vectors that are perpendicular to −⇀u .

b) Show that the three vectors you determined in part a are coplanar.

22. Quadrilateral ABCD has vertices A(3, –1, 4), B(–2, 3, 2), C(–5, 9, –1),
and D(0, 5, 1).

a) Prove that this quadrilateral is a parallelogram.

b) Determine the angle of intersection of the diagonals of the parallelogram.

23. Refer to Example 4. To find a set of values of x, y, and z that satisfied
equations ➀ and ➁ , we began by letting z = 1. Would it ever be possible 
to have two equations like these that you could not solve by starting with
z = 1? Use an example to explain your answer.

C

⇀u

⇀v

⇀u ↓ ⇀v
θ

U

N
O



In Section 1.7, we stated that there are two products of vectors that have great
significance in mathematics and science. In that section, we introduced the dot
product which is a scalar quantity. Now we will introduce the other product,
which is a vector. This product is called the cross product, and it has important
applications to problems involving rotation (see exercises 17 and 18) and
electromagnetic fields.

Let −⇀a and
−⇀
b be two non-collinear vectors in 3-space arranged tail-to-tail 

forming an angle θ, where 0˚ < θ < 180˚. The cross product, −⇀a ×
−⇀
b , is

defined to be a vector. The direction and the magnitude of this vector are
defined as follows.

Defining the direction of −⇀a × −⇀
b

The direction of −⇀a ×
−⇀
b is perpendicular to the plane containing −⇀a and 

−⇀
b

so that −⇀a ,
−⇀
b , and −⇀a ×

−⇀
b satisfy the right-hand rule: when the fingers of the 

right hand point in the direction of −⇀a and curl towards 
−⇀
b , the thumb points in

the direction of −⇀a ×
−⇀
b .

⇀a ×
⇀
b ⇀

b

In Section 2.5, 
we will extend 
this definition to
include collinear
vectors, so that
0˚ ≤ θ ≤ 180˚ .

The Cross Product2.4
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Defining the magnitude of −⇀a × −⇀
b

The magnitude of −⇀a ×
−⇀
b is equal to the area of the parallelogram determined

by −⇀a and 
−⇀
b .

Area of parallelogram = (base)(height)

=
(∣∣−⇀a ∣∣)(∣∣−⇀b ∣∣ sin θ

)

=
∣∣−⇀a ∣∣∣∣−⇀b ∣∣ sin θ

The magnitude of −⇀a ×
−⇀
b is defined to be 

∣∣−⇀a ×
−⇀
b

∣∣ =
∣∣−⇀a ∣∣∣∣−⇀b ∣∣ sin θ.

⇀a

⇀a ×
⇀
b ⇀

b sin θ

θ

⇀
b

⇀a
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Unlike the dot product, the cross product is defined only for three-dimensional
vectors. It is not possible to form cross products of two-dimensional vectors.

Visualize this page in three dimensions on your desk or table. In the 

diagram, |−⇀a | = 3,
∣∣−⇀b ∣∣ = 2, and θ = 30˚. Determine the magnitude 

of each cross product. Then state whether the cross product vector is
directed up towards the ceiling or down towards the floor.

a) −⇀a ×
−⇀
b

b)
−⇀
b × −⇀a

Solution

a) The magnitude of −⇀a ×
−⇀
b is:∣∣−⇀a ×

−⇀
b

∣∣ =
∣∣−⇀a ∣∣∣∣−⇀b ∣∣ sin θ∣∣−⇀a ×

−⇀
b

∣∣ = (3)(2)(sin 30˚)∣∣−⇀a ×
−⇀
b

∣∣ = 3

Place your right hand on the page with the fingers pointing in the direction

of −⇀a and curling towards 
−⇀
b . Your thumb points in the direction of the 

cross product. Hence, −⇀a ×
−⇀
b is directed up towards the ceiling.

b) The magnitude of 
−⇀
b × −⇀a is:∣∣−⇀b × −⇀a ∣∣ =

∣∣−⇀b ∣∣∣∣−⇀a ∣∣ sin θ∣∣−⇀b × −⇀a ∣∣ = (2)(3)(sin 30˚)∣∣−⇀b × −⇀a ∣∣ = 3

This time you will have to turn your right fist upside down so that the

fingers point in the direction of 
−⇀
b and curl towards −⇀a . Your thumb

points in the direction of the cross product. Hence,
−⇀
b × −⇀a is directed

down towards the floor.

⇀a

⇀
b

30˚

Example 1

• The number of linear units in the magnitude of −⇀a ×
−⇀
b equals the

number of square units in the area of the parallelogram. We say that
they are numerically equal.

Something to Think About
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Example 1 shows that −⇀a ×
−⇀
b and 

−⇀
b × −⇀a have the same magnitude, but 

opposite directions. Hence, −⇀a ×
−⇀
b and 

−⇀
b × −⇀a are not equal. In general,

−⇀a ×
−⇀
b = −

(−⇀
b × −⇀a )

.

Notice that the cross product was not drawn on the diagram in Example 1. The
reason is that it is not possible to tell the direction of the cross product without
additional information. To see why, compare the diagram in Example 1 with 
the diagrams below which show two triangular prisms viewed from different
positions. On all three diagrams, the arrows representing −⇀a and 

−⇀
b are

congruent and in the same position. On the diagrams below, the cross 

product −⇀a ×
−⇀
b was drawn according to the right-hand rule. If we remove 

the additional information and show only the vectors −⇀a and 
−⇀
b (as in 

Example 1), the cross product could be in either of two possible directions.

Definition of the Cross Product

Suppose −⇀a and 
−⇀
b are two non-collinear, non-zero vectors arranged 

tail-to-tail forming an angle θ, where 0˚ < θ < 180˚. The cross product,
−⇀a ×

−⇀
b , is defined as follows:

−⇀a ×
−⇀
b ⊥ −⇀a and −⇀a ×

−⇀
b ⊥ −⇀

b

−⇀a ,
−⇀
b , and −⇀a ×

−⇀
b satisfy the 

right-hand rule∣∣−⇀a ×
−⇀
b

∣∣ =
∣∣−⇀a ∣∣∣∣−⇀b ∣∣ sin θ

Take Note

⇀a

30˚

⇀a ×
⇀
b

⇀
b

⇀a

⇀a ×
⇀
b

⇀
b

30˚

⇀a

⇀a ×
⇀
b ⇀

b sin θ

θ

⇀
b
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Cross Product of Cartesian Vectors
We will often need to determine the cross product of vectors in Cartesian form. 

For example, consider the vectors −⇀a = [2, 1, −1] and 
−⇀
b = [1, 2, −3] . By 

definition, the cross product, −⇀a ×
−⇀
b , has magnitude 

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ sin θ, and it is 

perpendicular to both −⇀a and 
−⇀
b . The calculation of −⇀a ×

−⇀
b involves several

steps. We will outline the method, without showing intermediate calculations.

Step 1: Calculate the magnitude of −⇀a × −⇀
b

We need to determine 
∣∣−⇀a ∣∣∣∣−⇀b ∣∣ sin θ. We calculate the three factors separately.

Using −⇀a = [2, 1, −1] , we obtain 
∣∣−⇀a ∣∣ =

√
6.

Using 
−⇀
b = [1, 2, −3] , we obtain 

∣∣−⇀b ∣∣ =
√

14.

Using cos θ =
−⇀a •

−⇀
b∣∣−⇀a ∣∣∣∣−⇀b ∣∣ , we obtain cos θ = 7√

84
.

Substitute this expression for cos θ into the Pythagorean identity 
sin2 θ + cos2 θ = 1, then solve for sin θ to obtain:

sin θ = ±
√

5
12

Since cos θ is positive, θ is an acute angle and sin θ is positive.

sin θ =
√

5
12

The magnitude of −⇀a ×
−⇀
b is:∣∣−⇀a ×

−⇀
b

∣∣ =
∣∣−⇀a ∣∣∣∣−⇀b ∣∣ sin θ∣∣−⇀a ×

−⇀
b

∣∣ =
√

84
√

5
12∣∣−⇀a ×

−⇀
b

∣∣ =
√

35

Step 2: Determine any vector perpendicular to both −⇀a and 
−⇀
b

The vectors −⇀a = [2, 1, −1] and 
−⇀
b = [1, 2, −3] are the ones used in Example 4

in Section 2.3. In that example, we found that the vector −⇀n =
[
−1

3
, 5

3
, 1

]
is 

perpendicular to both −⇀a and 
−⇀
b . Therefore, −⇀a ×

−⇀
b must be collinear with 

this vector.

Step 3: Determine the components of −⇀a × −⇀
b

−⇀a ×
−⇀
b is a scalar multiple of −⇀n =

[
−1

3
, 5

3
, 1

]
. To determine the scalar,

we calculate the magnitude of −⇀n . The result is:

|−⇀n | =
√

35
3

From Step 1, the magnitude of −⇀a ×
−⇀
b is 

√
35, so −⇀a ×

−⇀
b is 3 times as long 

as −⇀n . Hence, −⇀a ×
−⇀
b = [−1, 5, 3] .

Pythagorean identity
Radical

Student Reference
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Therefore, if −⇀a = [2, 1, −1] and 
−⇀
b = [1, 2, −3] , then −⇀a ×

−⇀
b = [−1, 5, 3] .

Step 4: Check the orientation of −⇀a × −⇀
b

To be certain that −⇀a ×
−⇀
b is [−1, 5, 3] and not its opposite, [1, −5, −3],

we need to check that −⇀a ,
−⇀
b , and [−1, 5, 3] satisfy the right-hand rule. 

The diagram below shows these three vectors drawn on a grid in R3. These 
vectors satisfy the right-hand rule. Therefore, we know that 
−⇀a ×

−⇀
b = [−1, 5, 3] .

Although many calculations were required to determine −⇀a ×
−⇀
b , we obtained 

a simple result, −⇀a ×
−⇀
b = [−1, 5, 3] . This suggests that there should be a

formula for determining the cross product of Cartesian vectors. The following
formula can be obtained by applying the above method to −⇀a = [a1, a2, a3] and −⇀
b = [b1, b2, b3] . It can be shown that when −⇀a ×

−⇀
b is calculated using this 

formula, the vectors −⇀a ,
−⇀
b , and −⇀a ×

−⇀
b will always satisfy the right-hand rule.

This formula is a pattern involving the components of the vectors −⇀a and 
−⇀
b .

Instead of memorizing the formula, it is easier to apply the following procedure.
We will demonstrate the procedure using the vectors −⇀a = [2, 1, −1] and −⇀
b = [1, 2, −3] .

Cross Product of Cartesian Vectors

If −⇀a = [a1, a2, a3] and 
−⇀
b = [b1, b2, b3] , then

−⇀a ×
−⇀
b = [a2b3 − b2a3, a3b1 − b3a1, a1b2 − b1a2]

Take Note

⇀a ⇀
b

⇀a
×
⇀b

x

z

y

(–1, 5, 3)

(1, 2, –3)

(2, 1, –1)
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Write the components of the first vector in a row, starting with the second
component and repeating it at the end:

Below this, do the same with the components of the second vector:

Visualize three squares of numbers from left to right. Take the downward
product minus the upward product in each square.

The results are –1, 5, and 3, respectively. These are the components of the cross 

product. Therefore, −⇀a ×
−⇀
b = [−1, 5, 3] .

If −⇀u = [0, 2, 1] and −⇀v = [1, −1, 3] , calculate:

a) −⇀u × −⇀v
b) −⇀v × −⇀u

Solution

a) Write the components of −⇀u in a row, starting with the second component
and repeating it at the end. Do the same for −⇀v in the second row.

The components of −⇀u × −⇀v are:
(2)(3) − (−1)(1) = 7
(1)(1) − (3)(0) = 1
(0)(−1) − (1)(2) = −2

Therefore, −⇀u × −⇀v = [7, 1, −2].

2

−1

1

3

0

1

2

−1

Example 2

1

2

−1

−3

2

1

1

2

(1)(−3) − (2)(−1) = −1

(−1)(1)−(−3)(2) =5

(2)(2)−(1)(1)=3

1

2

−1

−3

2

1

1

2

1 −1 2 1



b)

The components of −⇀v × −⇀u are:
(−1)(1) − (2)(3) = −7
(3)(0) − (1)(1) = −1
(1)(2) − (0)(−1) = 2

Therefore, −⇀v × −⇀u = [−7, −1, 2] .

To check the calculation of a cross product, we can verify that the result 
is perpendicular to both given vectors. In Example 2a:

(−⇀u × −⇀v ) • −⇀u = [7, 1, −2] • [0, 2, 1]
= 0 + 2 − 2
= 0

and (−⇀u × −⇀v ) • −⇀v = [7, 1, −2] • [1, −1, 3]
= 7 − 1 − 6
= 0

Therefore, −⇀u × −⇀v is perpendicular to both −⇀u and −⇀v .

Since the magnitude of the cross product of two vectors equals the area of a
parallelogram, we can use cross products to calculate areas of parallelograms
and triangles in R3.

Determine the area of �PQR with vertices P(2, –1, 4),
Q(3, 1, –1), and R(1, 0, 2).

Solution

Two adjacent sides of the triangle are 
−⇀
PQ and 

−⇀
PR.

The area of �PQR is half the area of the 
parallelogram determined by 

−⇀
PQ and 

−⇀
PR.

−⇀
PQ = [3 − 2, 1 − (−1), −1 − 4]
−⇀
PQ = [1, 2, −5]

−⇀
PR = [1 − 2, 0 − (−1), 2 − 4]
−⇀
PR = [−1, 1, −2]

Determine the cross product,
−⇀
PQ ×

−⇀
PR.

2

1

−5

−2

1

−1

2

1

Q(3, 1, −1)

P(2, −1, 4)
R(1, 0, 2)

Example 3

−1

2

3

1

1

0

−1

2
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The components of 
−⇀
PQ ×

−⇀
PR are:

(2)(−2) − (1)(−5) = 1
(−5)(−1) − (−2)(1) = 7
(1)(1) − (−1)(2) = 3

Therefore,
−⇀
PQ ×

−⇀
PR = [1, 7, 3]∣∣−⇀PQ ×
−⇀
PR

∣∣ =
√

12 + 72 + 32

=
√

59
The area of the parallelogram determined by 

−⇀
PQ and 

−⇀
PR is 

√
59 square 

units. Hence, the area of �PQR is 1
2

√
59 square units.

1. In the definition of −⇀a ×
−⇀
b on page 101, why are −⇀a and 

−⇀
b non-collinear vectors?

2. Visualize this page in three dimensions on your desk or table. For each pair 

of vectors, calculate |−⇀u × −⇀v | . Then state whether −⇀u × −⇀v is directed up
towards the ceiling or down towards the floor.

a) |−⇀u | = 15, |−⇀v | = 10 b) |−⇀u | = 10, |−⇀v | = 12

3. In general, if a drawing of two vectors in 3-space is given, it is not possible
to tell the direction of the cross product without additional information.
What additional information is present in these diagrams?

a) The diagram on page 74.

b) The diagrams on page 99.

c) The diagrams in exercise 2 above.

⇀v

⇀u

125˚
⇀v

⇀u
35˚

A

Exercises2.4

• We calculated the area of �PQR using sides PQ and PR. Could 
we have used other pairs of sides to calculate the area? Explain.

Something to Think About
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4. Use the diagram on page 74. Verify that the positive directions of the
coordinate axes satisfy the right-hand rule when they are taken in their 
usual order: x-axis, y-axis, z-axis.

5. The vectors −⇀u = [x1, y1, z1] and −⇀v = [x2, y2, z2] are given.

a) Use the procedure described on page 104 to verify that 
−⇀u × −⇀v = [y1z2 − y2z1, z1x2 − z2x1, x1y2 − x2y1] .

b) Verify that −⇀u × −⇀v is perpendicular to both −⇀u and −⇀v .

6. Calculate −⇀u × −⇀v for each pair of vectors. Check each result.

a) −⇀u = [0, −1, 1] , −⇀v = [1, −1, 0]

b) −⇀u = [1, 2, 3] , −⇀v = [−2, 1, −3]

c) −⇀u = [3, −5, 2] , −⇀v = [7, 0, −1]

d) −⇀u = [4, −3, 1] , −⇀v = [8, −2, 5]

7. To check the calculation of the cross product of two vectors, we can show
that the result is perpendicular to both given vectors. Is it possible for the
result to be perpendicular to both given vectors and still not be the cross
product of those vectors? Explain.

8. Calculate the area of the parallelogram determined by each pair of vectors.

a) −⇀a = [1, 1, 0] ,
−⇀
b = [3, 2, 2]

b) −⇀a = [−1, 1, 2] ,
−⇀
b = [0, 3, 4]

c) −⇀a = [1, 4, 3] ,
−⇀
b = [2, 0, −1]

d) −⇀a = [2, −1, 2] ,
−⇀
b = [3, 1, −1]

9. Knowledge/Understanding The vectors −⇀a = [0, 2, −3] and −⇀
b = [1, 1, 5] are given.

a) Calculate −⇀a ×
−⇀
b .

b) Verify that −⇀a ×
−⇀
b is perpendicular to both −⇀a and 

−⇀
b .

c) Calculate the area of the parallelogram determined by vectors −⇀a and 
−⇀
b .

d) Illustrate the results on a diagram, showing vectors −⇀a ,
−⇀
b , −⇀a ×

−⇀
b , and

the parallelogram.

10. Find a vector that is perpendicular to both given vectors.

a) −⇀u = [1, 2, 3] , −⇀v = [3, 2, 1]

b) −⇀u = [5, −3, 2] , −⇀v = [1, −2, −4]

c) −⇀u = [0, 2, −1] , −⇀v = [2, −2, −1]

d) −⇀u = [6, 2, 1] , −⇀v = [−3, −1, 2]

B
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11. The vectors 
−⇀
i = [1, 0, 0] ,

−⇀
j = [0, 1, 0] ,

and 
−⇀
k = [0, 0, 1] define the unit cube 

shown in the diagram. Determine each 
cross product.

a)
−⇀
i × −⇀

i b)
−⇀
j × −⇀

j c)
−⇀
k ×

−⇀
k

d)
−⇀
i × −⇀

j e)
−⇀
j × −⇀

i f)
−⇀
j ×

−⇀
k

g)
−⇀
k × −⇀

j h)
−⇀
k × −⇀

i i)
−⇀
i ×

−⇀
k

12. Thinking/Inquiry/Problem Solving The vectors −⇀u =
−⇀
OU and −⇀v =

−⇀
OV

are any two non-collinear, non-zero vectors in 3-space forming an angle θ. 

Point N is the foot of the perpendicular from U to the line containing 
−⇀
OV.

a) Prove that:
i) The length of segment ON is |

−⇀u • −⇀v |
|−⇀v | .

ii) The length of segment UN is |
−⇀u × −⇀v |

|−⇀v | .

b) Draw a diagram to illustrate what the expressions |
−⇀u • −⇀v |

|−⇀u | and |
−⇀u × −⇀v |

|−⇀u |
represent.

13. Find the area of the parallelogram with the given vertices.

a) P(3, –1, 1), Q(1, 2, –1), R(0, 3, 0), S(–2, 6, –2)

b) D(0, 3, 1), E(2, –2, 4), F(–1, 3, 2), G(1, –2, 5)

14. Find the area of the triangle with the given vertices.

a) A(0, 2, 3), B(2, –1, –1), C(4, –2, –3)

b) P(2, –1, 4), Q(3, –3, 7), R(–1, 0, 1)

15. The points A(1, –2, 0), B(3, 1, 4), and C(–1, 0, 3) are given.

a) Determine 
−⇀
AB,

−⇀
BC, and 

−⇀
CA. Then show that 

−⇀
AB +

−⇀
BC +

−⇀
CA =

−⇀
0 .

b) Determine each cross product.

i)
−⇀
AB ×

−⇀
BC

ii)
−⇀
BC ×

−⇀
CA

iii)
−⇀
CA ×

−⇀
AB

c) Explain why the cross products in part b are all equal.

x

y

z

⇀
i

⇀
j

⇀
k

O
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16. Communication Vectors −⇀a and 
−⇀
b are non-collinear such that |−⇀a | = 4,∣∣−⇀b ∣∣ = 3, and 

∣∣−⇀a ×
−⇀
b

∣∣ = 6.

a) Determine the angle θ between −⇀a and 
−⇀
b .

b) Draw a diagram to illustrate this situation.

c) Explain why there are two possible angles in part a.

Exercises 17 and 18 involve a concept from physics called torque. Torque is 
a measure of how much a force acting on an object causes that object to rotate,

and it is a vector. The torque vector, −⇀τ , is defined as:
−⇀τ = −⇀r ×

−⇀
F

where −⇀r is the radius vector from the centre of rotation to the point where 
the force,

−⇀
F , is applied.

17. When we use a wrench to tighten a bolt, three vectors are involved 
(see diagram below).

• −⇀r has its tail at the centre of the bolt and its head at the point where 
we apply the force that turns the wrench.

•
−⇀
F represents the force we apply to the wrench. Its direction is not

necessarily perpendicular to the wrench. Let θ represent the angle 

between 
−⇀
F and −⇀r (when they are arranged tail-to-tail).

• −⇀τ represents the torque vector.

a) Explain why the magnitude of the torque vector is 
∣∣−⇀r ∣∣∣∣−⇀F ∣∣ sin θ.

b) Check that the direction of the torque vector in the diagram is correct.

⇀
F

θ⇀
F sin θ

⇀r

Torque, ⇀τ
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18. Application Suppose you apply a force of 50 N at a point on a door that 
is 0.7 m from its hinges. The direction of the force makes an angle of 60˚
with the door (below left).

a) Calculate the magnitude of the torque vector (the units are newton metres).

b) Suppose you apply the same force at the same distance from the hinges,
but at an angle of 120˚ (below right). Explain why the magnitude of the
torque vector is the same as in part a.

c) Describe the direction of the torque vector.

19. The Sine Law states that in any �ABC, sin A
a

= sin B
b

= sin C
c

. Use cross
products to prove the Sine Law.

C

0.7 m

60˚

0.7 m

120˚



In Section 2.2, we stated that the problem of determining if three vectors are
coplanar will have great significance in Chapter 3. It is so significant that we
need to develop a more efficient method of determining if three vectors are
coplanar. This method involves using both the cross and dot products together
in the same expression.

The product −⇀u • −⇀v × −⇀w
Since the cross product of two vectors is a vector, we can calculate a dot
product such as −⇀u • (−⇀v × −⇀w ) , or −⇀u • −⇀v × −⇀w . We do not need to use
brackets in this expression because −⇀u • −⇀v is a scalar. Therefore, −⇀u • −⇀v × −⇀w
cannot mean (−⇀u • −⇀v ) × −⇀w because this expression is not defined.

The vectors −⇀u = [2, −1, 5] , −⇀v = [−3, 2, 2] , and −⇀w = [1, 4, −6] are given.

a) Calculate −⇀u • −⇀v × −⇀w .

b) Determine if the vectors −⇀u , −⇀v , and −⇀w are coplanar.

Solution

a) First, calculate −⇀v × −⇀w .

2 2 −3 2

Example 1

Properties of the Cross Product2.5
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The components of −⇀v × −⇀w are:
(2)(−6) − (4)(2) = −20
(2)(1) − (−6)(−3) = −16
(−3)(4) − (1)(2) = −14

Therefore, −⇀v × −⇀w = [−20, −16, −14]−⇀u • −⇀v × −⇀w = [2, −1, 5] • [−20, −16, −14]
= −40 + 16 − 70
= −94

b) The vectors −⇀v and −⇀w are both perpendicular to −⇀v × −⇀w . Since−⇀u • −⇀v × −⇀w ≠ 0 , we know that −⇀u is not perpendicular to −⇀v × −⇀w .
Therefore, the vectors −⇀u , −⇀v , and −⇀w are not coplanar.

4 −6 1 4



Example 1b is significant because it is the basis of a simple test 
for coplanar vectors. Let −⇀u , −⇀v , and −⇀w be vectors in three
dimensions drawn tail-to-tail. Then either −⇀u • −⇀v × −⇀w = 0 or−⇀u • −⇀v × −⇀w ≠ 0 .

Suppose −⇀u • −⇀v × −⇀w = 0 Suppose −⇀u • −⇀v × −⇀w ≠ 0 .

Then −⇀v and −⇀w are both Then −⇀u is not perpendicular to
perpendicular to −⇀v × −⇀w , and −⇀v × −⇀w , so −⇀u does not lie on the −⇀u is perpendicular to −⇀v × −⇀w . plane determined by −⇀v and −⇀w .

Hence,−⇀u , −⇀v , and −⇀w are Hence, −⇀u , −⇀v , and −⇀w are not 
coplanar. coplanar.

Determine if the vectors −⇀a = [1, 2, 3] ,
−⇀
b = [2, −1, 3] , and −⇀c = [8, 1, 15]

are coplanar.

Solution

Calculate the cross product of any two of the vectors, say, −⇀a ×
−⇀
b .

2

−1

3

3

1

2

2

−1

Example 2

Test for Coplanar Vectors
Let −⇀u , −⇀v , and −⇀w be vectors in three dimensions. To determine if the
vectors are coplanar, calculate −⇀u • −⇀v × −⇀w .

• If −⇀u • −⇀v × −⇀w = 0 , then −⇀u , −⇀v , and −⇀w are coplanar.

• If −⇀u • −⇀v × −⇀w ≠ 0 , then −⇀u , −⇀v , and −⇀w are not coplanar.

Instead of −⇀u • −⇀v × −⇀w , we can use −⇀v • −⇀u × −⇀w or −⇀w • −⇀u × −⇀v .

Take Note

⇀v × ⇀w

⇀v

⇀u
⇀w

⇀v × ⇀w

⇀v

⇀u

⇀w

An expression 
of the form 
−⇀u • −⇀v × −⇀w is
called a scalar 
triple product.

112 CHAPTER 2 VECTORS IN THREE DIMENSIONS
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The components of −⇀a ×
−⇀
b are:

(2)(3) − (−1)(3) = 9
(3)(2) − (3)(1) = 3
(1)(−1) − (2)(2) = −5

Hence, −⇀a ×
−⇀
b = [9, 3, −5]

Now calculate −⇀c • −⇀a ×
−⇀
b .

−⇀c • −⇀a ×
−⇀
b = [8, 1, 15] • [9, 3, −5]

= 72 + 3 − 75
= 0

Therefore, the vectors −⇀a ,
−⇀
b , and −⇀c are coplanar.

Compare Example 2 with Example 3 on page 86. In the earlier example,

we showed that the vectors are coplanar by showing that −⇀c = 2−⇀a + 3
−⇀
b . 

The example above illustrates a more efficient method, but it does not give 
as much information.

Other properties of the cross product
In Section 2.4 we defined the cross product of two vectors −⇀a and 

−⇀
b in R3 to 

be the vector −⇀a ×
−⇀
b with magnitude equal to the area of the parallelogram 

determined by −⇀a and 
−⇀
b , or 

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ sin θ, and direction perpendicular to the 

plane containing −⇀a and 
−⇀
b so that −⇀a ,

−⇀
b , and −⇀a ×

−⇀
b satisfy the right-hand

rule.

For Cartesian vectors −⇀a = [a1, a2, a3] and 
−⇀
b = [b1, b2, b3] , the cross 

product is −⇀a ×
−⇀
b = [a2b3 − b2a3, a3b1 − b3a1, a1b2 − b1a2] . This is best

determined using the procedure shown on page 104 in Section 2.4.

To say that −⇀a ×
−⇀
b is a product, we would expect it to have some properties that

correspond to properties of products in arithmetic and algebra. We have already
seen a property that it does not have. In Section 2.4, we found that the cross 

product does not satisfy the commutative law. Instead, −⇀a ×
−⇀
b = −(

−⇀
b × −⇀a ).

We saw in Chapter 1 that the dot product is distributive over addition:
−⇀a • (

−⇀
b + −⇀c ) = −⇀a •

−⇀
b + −⇀a • −⇀c . The corresponding property for cross 

products is −⇀a × (
−⇀
b + −⇀c ) = −⇀a ×

−⇀
b + −⇀a × −⇀c . In the exercises, you will

verify this property using a specific example (see exercise 9). This property can
be proved using Cartesian vectors (exercise 19). It can also be proved using the
definition of the cross product, but the proof is beyond the scope of this book.
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In arithmetic and algebra, the product of a number and itself is its square. 
Using × for ordinary multiplication, we write y × y = y2.

In Section 1.8, we found the dot product of a vector with itself. The result is the 

square of its magnitude: −⇀a • −⇀a =
∣∣−⇀a ∣∣2

.

In the definition of the cross product −⇀a ×
−⇀
b on page 101, the vectors −⇀a and −⇀

b are not collinear, and the angle θ between them satisfies 0˚ < θ < 180˚.

Since this requires −⇀a and 
−⇀
b to have different directions, it is not possible

according to this definition to create the cross product −⇀a × −⇀a .

However, we can extend the definition to include the case where −⇀a and 
−⇀
b are

collinear, and θ = 0˚ or θ = 180˚. Since sin θ = 0 for these values of θ, the 

magnitude of −⇀a ×
−⇀
b is 0. Hence, −⇀a ×

−⇀
b is the zero vector and has no 

specified direction. That is, if −⇀a and 
−⇀
b are collinear, then −⇀a ×

−⇀
b =

−⇀
0 .

This means that −⇀a × −⇀a =
−⇀
0 .

1. In Example 2, we determined that the vectors −⇀a ,
−⇀
b , and −⇀c were coplanar 

by showing that −⇀c • −⇀a ×
−⇀
b = 0 . Show that these vectors are coplanar 

by calculating:

a) −⇀a •
−⇀
b × −⇀c b)

−⇀
b • −⇀a × −⇀c

2. a) Explain why −⇀a • −⇀a ×
−⇀
b = 0 and 

−⇀
b • −⇀a ×

−⇀
b = 0 .

b) Explain why brackets are not needed in the expressions in part a.

3. a) What is the cross product of a vector with itself?

b) What is the cross product of a vector with its opposite?

A

Exercises2.5

Properties of the Cross Product

Let −⇀a ,
−⇀
b , and −⇀c be three non-zero, non-collinear vectors 

arranged tail-to-tail.
−⇀a ×

−⇀
b = −

(−⇀
b × −⇀a )

−⇀a ×
(−⇀

b + −⇀c )
= −⇀a ×

−⇀
b + −⇀a × −⇀c

−⇀a × −⇀a =
−⇀
0

Take Note
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4. Knowledge/Understanding Determine if the vectors are coplanar.

a) −⇀a = [4, −1, 5] ,
−⇀
b = [1, 2, 6] , −⇀c = [10, −7, 4]

b) −⇀p = [−2, 7, 1] , −⇀q = [−4, 1, 1] , −⇀r = [−3, 4, 1]

c) −⇀u = [0, 8, −3] , −⇀v = [2, −4, 1] , −⇀w = [1, 10, −3]

5. Determine if the points are coplanar.

a) A(–1, 2, 1), B(3, –1, 2), C(1, 4, –3), D(7, 2, 1)

b) J(5, 7, –2), K(8, 3, 0), L(4, 10, 1), M(9, 0, –3)

c) P(–3, 5, 4), Q(2, 3, 1), R(8, 4, 0), S(3, –1, 2)

6. Communication When we test if three vectors −⇀u , −⇀v , and −⇀w are
coplanar, explain why it doesn’t matter whether we calculate −⇀u • −⇀v × −⇀w ,
−⇀v • −⇀u × −⇀w , or −⇀w • −⇀u × −⇀v .

7. Let −⇀a = [−1, 4, 5] and 
−⇀
b = [3, 1, −2] . Determine each of the following.

a) (2−⇀a ) ×
−⇀
b b) −⇀a × (2

−⇀
b ) c) 2(−⇀a ×

−⇀
b )

8. Let k be any scalar. Use the definition of the cross product to explain why 

(k−⇀a ) ×
−⇀
b = −⇀a × (k

−⇀
b ) = k(−⇀a ×

−⇀
b ) .

9. Let −⇀a = [2, −1, 3] ,
−⇀
b = [4, 2, −1] , and −⇀c = [−3, 0, 2] . Show that 

−⇀a × (
−⇀
b + −⇀c ) = −⇀a ×

−⇀
b + −⇀a × −⇀c .

10. Let −⇀a = [1, 3, −4] and 
−⇀
b = [2, −3, 1] . Determine each of the following,

and compare the results.

a) (2−⇀a ) ×
−⇀
b b) (3−⇀a ) ×

−⇀
b c) (5−⇀a ) ×

−⇀
b

11. Let r and s be any positive scalars. Use the definition of the cross product to 

explain why (r−⇀a ) ×
−⇀
b + (s−⇀a ) ×

−⇀
b =

[
(r + s)−⇀a ]

×
−⇀
b .

12. Thinking/Inquiry/Problem Solving The identity below is 
significant because it relates 3 different kinds of products—
a cross product and a dot product of two vectors on the left 
side, and the product of two real numbers on the right side.∣∣−⇀a ×

−⇀
b

∣∣2
+ (−⇀a •

−⇀
b )

2
=

∣∣−⇀a ∣∣2∣∣−⇀b ∣∣2

a) Use the definitions of −⇀a ×
−⇀
b and −⇀a •

−⇀
b to prove the identity.

b) Explain why the identity is equivalent to the Pythagorean identity.

Identity

Student Reference

B



13. If −⇀a +
−⇀
b + −⇀c =

−⇀
0 , explain why −⇀a ×

−⇀
b =

−⇀
b × −⇀c = −⇀c × −⇀a .

14. Application When we multiply more than two numbers in arithmetic,
it does not matter which ones we multiply first: (xy)z = x(yz).
This property is called the associative law of multiplication. Explain 
why the cross product does not satisfy the associative law. That is,

(−⇀a ×
−⇀
b ) × −⇀c ≠ −⇀a × (

−⇀
b × −⇀c ) .

15. Explain your answer to each question.

a) A property of multiplication in arithmetic is that multiplying a number 
by 1 does not change the number. For example, 5 × 1 = 5. Is there a
corresponding property for cross products?

b) Another property of multiplication in arithmetic is that multiplying a
number by 0 gives a product of 0. For example, 5 × 0 = 0. Is there a
corresponding property for cross products?

16. If −⇀a × −⇀c =
−⇀
b × −⇀c , does it follow that −⇀a =

−⇀
b ? Draw a diagram 

to illustrate your explanation.

17. In exercise 5 in Section 1.8 (page 64), you showed that if 
−⇀a • −⇀c =

−⇀
b • −⇀c it does not follow that −⇀a =

−⇀
b . In exercise 16, you 

showed that if −⇀a × −⇀c =
−⇀
b × −⇀c it does not follow that −⇀a =

−⇀
b . Prove 

that if both −⇀a • −⇀c =
−⇀
b • −⇀c and −⇀a × −⇀c =

−⇀
b × −⇀c , with −⇀c ≠ 0, then 

it does follow that −⇀a =
−⇀
b .

18. Given that −⇀a × (
−⇀
b + −⇀c ) = −⇀a ×

−⇀
b + −⇀a × −⇀c , prove that 

(
−⇀
b + −⇀c ) × −⇀a =

−⇀
b × −⇀a + −⇀c × −⇀a .

19. Given that −⇀a = [a1, a2, a3] ,
−⇀
b = [b1, b2, b3] , and −⇀c = [c1, c2, c3] ,

prove that −⇀a × (
−⇀
b + −⇀c ) = −⇀a ×

−⇀
b + −⇀a × −⇀c .

20. Given that −⇀u = s−⇀v + t−⇀w , prove algebraically that −⇀u • −⇀v × −⇀w = 0 .

C
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Cartesian vectors in 3-space, or R3, are ordered triples. By convention, points O(0, 0, 0),
P(x, y, z), and vector −⇀v = [x, y, z] in R3 are plotted on a grid like the one shown below.

The magnitude of −⇀v is |−⇀v | =
√

x2 + y2 + z2.

N(x, y, 0)

y

z

x

O

P(x, y, z)

βγ
⇀v

α

Mathematics Toolkit
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To determine the direction angles α, β, and γ, use the direction cosines of −⇀v :

cos α = x
|−⇀v | cos β = y

|−⇀v | cos γ = z
|−⇀v |

Also, cos2 α + cos2 β + cos2 γ = 1

If A(a1, a2, a3) and B(b1, b2, b3) are any two points, then:
−⇀
AB = [b1 − a1, b2 − a2, b3 − a3]

The magnitude of this vector is:∣∣−⇀AB
∣∣ =

√
(b1 − a1)2 + (b2 − a2)2 + (b3 − a3)2

Operations on Cartesian Vectors
If −⇀u = [x1, y1, z1] and −⇀v = [x2, y2, z2], then:

−⇀u + −⇀v = [x1 + x2, y1 + y2, z1 + z2]
−⇀u − −⇀v = [x1 − x2, y1 − y2, z1 − z2]

k−⇀u = [kx1, ky1, kz1]
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Test for Collinear Vectors
If −⇀a and 

−⇀
b are given vectors and a scalar s can be found such that 

−⇀
b = s−⇀a , then −⇀a

and 
−⇀
b are collinear.

Test for Coplanar Vectors
If −⇀a ,

−⇀
b and −⇀c are given vectors and scalars s and t can be found such that 

−⇀c = s−⇀a + t
−⇀
b , then −⇀a ,

−⇀
b , and −⇀c are coplanar.

See the last item in this toolkit for a different test for coplanar vectors.

The Dot Product of Two Vectors

If −⇀a and 
−⇀
b are any two vectors forming an angle θ, then their dot product is defined 

to be −⇀a •
−⇀
b =

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ . This definition applies to both R2 and R3.

For Cartesian vectors −⇀a = [a1, a2, a3] and 
−⇀
b = [b1, b2, b3] ,

−⇀a •
−⇀
b = a1b1 + a2b2 + a3b3

To calculate the angle between two vectors, use cos θ =
−⇀a •

−⇀
b∣∣−⇀a ∣∣∣∣−⇀b ∣∣ .

Test for Perpendicular Vectors
If two vectors are perpendicular, then their dot product is 0.

The Cross Product of Two Vectors

If −⇀a and 
−⇀
b are any two vectors in 3-space forming an angle θ, their cross product 

−⇀a ×
−⇀
b is defined to be a vector having:

• direction perpendicular to the plane containing −⇀a and 
−⇀
b such that −⇀a ,

−⇀
b , and 

−⇀a ×
−⇀
b satisfy the right-hand rule

• magnitude equal to 
∣∣−⇀a ∣∣∣∣−⇀b ∣∣ sin θ, which is the area of the parallelogram determined 

by −⇀a and 
−⇀
b .

For Cartesian vectors −⇀a = [a1, a2, a3] and 
−⇀
b = [b1, b2, b3] the cross product is 

calculated using the following procedure. Write the components of the vectors in two 
rows, starting with the second component and repeating it at the end. Then calculate each
downward product minus the upward product as indicated.

a2

b2

a3

b3

a1

b1

a2

b2
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1. Given the vector −⇀a = [4, 1, 2] , determine its:

a) magnitude

b) direction cosines

c) direction angles

2. Determine the magnitude and the direction angles of 
−⇀
AB for the 

given points.

a) A(2, –3, 1), B(4, 0, 1)

b) A(0, –1, 3), B(–3, 2, 6)

3. The vectors −⇀u = [3, 1, −2] and −⇀v = [−1, 4, 2] are given. Determine:

a) −⇀u + 2−⇀v b) 3−⇀u − −⇀v c) 4−⇀u − 3−⇀v
4. Determine if the vectors −⇀u = [10, −4, 6] and −⇀v = [−15, 6, −9]

are collinear.

5. Determine if the points A(2, –4, 1), B(11, 2, –2), and C(–1, –6, 2) 
are collinear.

6. Determine if the vectors −⇀a = [−2, −1, 4] ,
−⇀
b = [5, −2, 5] , and−⇀c = [3, 0, −1] are coplanar.

7. Determine if the points P(3, –2, –7), Q(0, 4, 2), R(–1, 3, –1), and 
S(5, –1, –3) are coplanar.

Properties of the cross product: −⇀a ×
−⇀
b = −

(−⇀
b × −⇀a )

−⇀a ×
(−⇀

b + −⇀c )
= −⇀a ×

−⇀
b + −⇀a × −⇀c

−⇀a × −⇀a =
−⇀
0

Test for Coplanar Vectors

Let −⇀a ,
−⇀
b and −⇀c be vectors in three dimensions. To determine if the vectors are coplanar,

calculate −⇀a •
−⇀
b × −⇀c .

• If −⇀a •
−⇀
b × −⇀c = 0 , then −⇀a ,

−⇀
b and −⇀c are coplanar.

• If −⇀a •
−⇀
b × −⇀c ≠ 0 , then −⇀a ,

−⇀
b and −⇀c are not coplanar.

Instead of −⇀a •
−⇀
b × −⇀c , we can use 

−⇀
b • −⇀a × −⇀c or −⇀c • −⇀a ×

−⇀
b .
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8. Determine the value of m so that the vectors −⇀u = [4, −2, 6] and−⇀v = [6, m, 9] are:

a) parallel b) perpendicular

9. Triangle ABC has vertices A(–1, 3, 2), B(–1, 5, 2), and C(1, 5, –2).

a) Show that �ABC is a right triangle.

b) Calculate the measures of the two acute angles.

c) Calculate the projection of 
−⇀
AC on 

−⇀
AB.

10. Let −⇀a = [1, 1, −2] ,
−⇀
b = [3, −2, 5] , −⇀c = [0, 5, 2] , and −⇀

d = [−2, 1, 3] . Explain your answer to each question.

a) Does −⇀a •
−⇀
b =

−⇀
b • −⇀a ?

b) Can any meaning be given to −⇀a •
−⇀
b • −⇀c ?

c) Does −⇀a • (
−⇀
b + −⇀c ) = −⇀a •

−⇀
b + −⇀a • −⇀c ?

d) Does (−⇀a +
−⇀
b ) • −⇀c = −⇀a • −⇀c +

−⇀
b • −⇀c ?

e) Does (−⇀a +
−⇀
b ) • (−⇀c +

−⇀
d ) = −⇀a • −⇀c + −⇀a •

−⇀
d +

−⇀
b • −⇀c +

−⇀
b •

−⇀
d ?

11. Given −⇀a = [2, 3, 3] and 
−⇀
b = [−1, 0, 3] , determine:

a) −⇀a ↓ −⇀
b b)

∣∣−⇀a ↓ −⇀
b

∣∣
c)

−⇀
b ↓ −⇀a d)

∣∣−⇀b ↓ −⇀a ∣∣
12. Determine a vector perpendicular to both the y-axis and the vector with tail

at A(1, 1, 0) and head at B(3, 0, 2).

13. The vector −⇀a = [2, −5, 6] is given. Determine one vector that is 

perpendicular to −⇀a .

14. The vectors −⇀a = [2, −5, 6] and 
−⇀
b = [−1, 0, 4] are given. Determine one 

vector that is perpendicular to both −⇀a and 
−⇀
b .

15. Find two unit vectors each of which is perpendicular to the vectors [1, 1, 0]
and [1, 0, 1].

16. If −⇀a = [4, −2, 3] and 
−⇀
b = [−2, 1, −2] , calculate:

a) −⇀a ×
−⇀
b

b)
−⇀
b × −⇀a

c) the area of the parallelogram determined by −⇀a and 
−⇀
b .
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17. Given the points A(1, 2, 0), B(0, 1, 0) and C(1, 0, 2), determine the area 
of �ABC.

18. Determine x and y if −⇀a = [x, y, 1],
−⇀
b = [1, 2, 3] , and 

−⇀a ×
−⇀
b = [7, −5, 1] .

19. Which of the following statements are true? Explain.

a) −⇀a ×
−⇀
b =

−⇀
b × −⇀a

b) −⇀a •
−⇀
b =

−⇀
b • −⇀a

c) −⇀a • (
−⇀
b + −⇀c ) = −⇀a •

−⇀
b + −⇀a • −⇀c

d) −⇀a × (
−⇀
b • −⇀c ) = −⇀a ×

−⇀
b • −⇀c

e) −⇀a •
−⇀
b × −⇀c =

−⇀
b • −⇀c × −⇀a

f) −⇀a × (
−⇀
b + −⇀c ) = −⇀a ×

−⇀
b + −⇀a × −⇀c

g) (−⇀a −
−⇀
b ) × (−⇀a +

−⇀
b ) = 2−⇀a ×

−⇀
b

20. a) Refer to exercise 17 on page 109. Describe how the 
torque would change under the following conditions. 
Indicate the direction and magnitude of the torque
vector.
i) The magnitude of the radius vector is multiplied 

by 2.
ii) The applied force is acting in the opposite

direction.

b) At what angle would the applied force create the
greatest torque? Explain.

Charles Dodgson
(1832–1898)
Born: Daresbury,
England

Upon graduating from Christ Church
College, Oxford, Dodgson became a
lecturer of mathematics there.
Dodgson is most famous for writing
Alice’s Adventures in Wonderland
and Through the Looking Glass,
using the pen name Lewis Carroll. 
He was also an avid photographer
and specialized in photographing
children.
Dodgson’s mathematical works are
numerous, but less well known. It is
rumoured that Queen Victoria,
having said how much she enjoyed
Alice’s Adventures in Wonderland
and was looking forward to another
work by him, was dismayed to
receive A Syllabus of Plane
Algebraical Geometry.

Photo not
available
due to

copyright
issues.



Self-Test

1. Show that the vectors −⇀a = [5, 1, −2] and 
−⇀
b = [3, −3, 6] are

perpendicular.

2. Given the vectors −⇀a = [4, 1, 2] and 
−⇀
b = [3, −2, 5] , determine:

a) −⇀a •
−⇀
b

b) −⇀a ×
−⇀
b

c) the angle between −⇀a and 
−⇀
b

d) −⇀a ↓ −⇀
b

e)
∣∣−⇀a ↓ −⇀

b
∣∣

3. The vector −⇀u = [3, −1, 6] is given. Determine two different non-collinear
vectors both of which are perpendicular to −⇀u .

4. Communication Describe three different methods you could use to show
that the triangle with vertices A(3, 1, 2), B(4, 3, 5), and C(7, –4, 4) has a
right angle at A.

5. Given −⇀a = [3, 4, 3] and 
−⇀
b = [1, −2, 5] .

a) Determine −⇀a •
−⇀
b .

b) Calculate the angle between −⇀a and 
−⇀
b .

c) If −⇀c = [1, −3, t], find t so that −⇀a and −⇀c are perpendicular.
d) Determine −⇀a ↓ −⇀
b .

e) Determine −⇀a ×
−⇀
b .

6. Knowledge/Understanding Determine if the vectors −⇀a = [5, 1, −2] ,−⇀
b = [−2, 3, 1] , and −⇀c = [11, 9, −4] are coplanar.

7. Application Calculate the area of the parallelogram whose adjacent sides 

are −⇀a = [1, 1, −2] and 
−⇀
b = [3, 3, −1] .

8. Thinking/Inquiry/Problem Solving

a) What is the z-component of a vector parallel to the xy-plane? Explain.

b) Find all unit vectors parallel to the xy-plane and perpendicular to the
vector [1, −2, 2].
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Equations of Lines and Planes 3

Photo not available due
to copyright issues.
Curriculum Expectations
By the end of this chapter, you will:

• Determine the vector and parametric
equations of lines in two-space and 
the vector, parametric, and symmetric
equations of lines in three-space.

• Determine the intersections of lines 
in three-space.

• Determine the vector, parametric,
and scalar equations of planes.

• Determine the intersection of a line 
and a plane in three-space.

• Solve systems of linear equations
involving up to three unknowns, using
row reduction of matrices, with and
without the aid of technology.

• Interpret row reduction of matrices as
the creation of a new linear system
equivalent to the original.

• Determine the intersection of two or
three planes by setting up and solving 
a system of linear equations in three
unknowns.

• Interpret a system of two linear
equations in two unknowns and a system
of three linear equations in three
unknowns geometrically, and relate the
geometrical properties to the type of
solution set the system of equations
possesses.

• Solve problems involving the
intersections of lines and planes, and
present the solutions with clarity and
justification.



In earlier grades, you learned various forms of the equation of a line in R2. 

Consider the line passing through A(–1, 4) with slope 2
3

, as shown in the
diagram.

In slope-point form, the equation of the line is:

y = 2
3

(x + 1) + 4

If we solve this equation for y, we obtain the slope y-intercept form:

y = 2
3

x + 14
3

10
y

x
0

A (−1, 4)
2

3

P(x, y)

10−10

Revisiting the Equation of a Line in 2-space3.1
If we rearrange the terms, we obtain the equation in standard form:

2x − 3y + 14 = 0

The equation of a line is satisfied by the coordinates of all points on the line,
and no others. For example, the point (5, 8) is on the line above. These
coordinates satisfy all three equations.

In the next section, we will consider the equations of a line in R3. None of 
the above forms of equation can be extended to lines in three dimensions. 
The equations involving slope cannot be extended to R3 because the concept 
of slope involves only two quantities. The slope of a line in R3 is not defined.
The standard form can be extended to R3, but we will see in Section 3.3 that an
equation such as 2x − 3y + z + 14 = 0 does not represent a line (it represents 
a plane).

In this section, we will establish other forms of the equation of a line in R2.
These are forms that are easily extended to R3, and we will do that in the next
section. These forms involve vectors.
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3.1 REVISITING THE EQUATION OF A LINE IN 2-SPACE 125

The diagram below shows the same line as on page 124. This line passes
through A(–1, 4) and has direction vector −⇀m = [3, 2]. That is, the line is
parallel to −⇀m .

Direction vectors of lines are not unique. Any scalar multiple of [3, 2] is also 
a direction vector of this line.
We will determine various forms of the equation of this line.

Vector equation
Let P(x, y) be any point on the line. Visualize P moving back and forth along
the line. As it moves, points O, A, and P always form a triangle in which the
triangle law is satisfied:

−⇀
OP =

−⇀
OA +

−⇀
AP

Since 
−⇀
AP is collinear with −⇀m , we know that 

−⇀
AP = t−⇀m , where t is any scalar. 

Let 
−⇀
OA = −⇀a and 

−⇀
OP = −⇀p . Then we can write the above equation as:

−⇀p = −⇀a + t−⇀m
or [x, y] = [−1, 4] + t[3, 2] ➀

Equation ➀ is a vector equation of the line. Although it is a single equation, it
contains information about both the x- and the y-components of any vector with
tail [0, 0] and head [x, y]. Vector equations are not unique because any point 
on the line and any scalar multiple of the direction vector can be used.

We can use equation ➀ to determine the coordinates of points on the line,
simply by substituting values for t. For example:

If t = 1, we obtain [−1, 4] + [3, 2] = [2, 6].
If t = 3, we obtain [−1, 4] + [9, 6] = [8, 10].
If t = −2, we obtain [−1, 4] + [−6, −4] = [−7, 0].

10
y

x
O

A (−1, 4)

P(x, y)

10−10

⇀a

⇀p
⇀m = [3, 2]



The points (2, 6), (8, 10), and (–7, 0) lie on the line.

Parametric equations
On page 125, we found the coordinates of some points on the line by
substituting values of t into equation ➀ and simplifying the results. It is more
efficient to rewrite the equation so that the right side is a single vector before
substituting the values.

[x, y] = [−1, 4] + t[3, 2]
[x, y] = [−1, 4] + [3t, 2t]
[x, y] = [−1 + 3t, 4 + 2t]

Since these vectors are equal, the corresponding components are equal.

x = −1 + 3t
y = 4 + 2t

}
➁

Equations ➁ are called parametric equations of the line. Parametric equations
of a line have these properties:

• The constant terms on the right side are the coordinates of a point on the line.
• The coefficients of t are the components of a direction vector of the line.

Vector Equation of a Line in 2-space
Let A(a1, a2) be a fixed point on a line in R2 with direction vector−⇀m = [m1, m2] . Let P(x, y) be any point on the line. The vector 
equation of the line is:

[x, y] = [a1, a2] + t[m1, m2]

where t can be any real number.

Take Note

10

y

x
0 10−10

t = −3

t = −2

t = −1

t = 0

t = 1

t = 2

t = 3

t = 4
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Parametric equations are formulas for the coordinates of points on the line. For
example, if t = 2, we obtain (5, 8); if t = −3, we obtain (–10, –2), and so on.
These points are on the line.

Parametric equations of a line are not unique. In the previous equations, we
could replace the constant terms on the right side with the coordinates of any
point on the line. We can also replace the coefficients of t with the components
of any scalar multiple of the direction vector.

In both the vector equation and the parametric equations, the letter t is called a
parameter. Coordinates of points on the line are found by substituting different
real numbers for t.

A line passes through the points A(–2, 3) and B(5, 2).

a) Write a vector equation of the line.

b) Write parametric equations of the line.

Solution

a) A direction vector for the line is:
−⇀
AB = [5 − (−2), 2 − 3]
−⇀
AB = [7, −1]
A vector equation of the line is:

[x, y] = [−2, 3] + t[7, −1]

b) Use the result of part a. Equate corresponding components. 
Parametric equations of the line are:

x = −2 + 7t
y = 3 − t

Example 1

Parametric Equations of a Line in 2-space
Let A(a1, a2) be a fixed point on a line in R2 with direction vector−⇀m = [m1, m2] . Let P(x, y) be any point on the line. Parametric 
equations of the line are:

x = a1 + tm1

y = a2 + tm2

The letter t is a parameter that can represent any real number.

Take Note
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Symmetric equation
Suppose a line passes through the point A(1, –2) and has direction vector 
−⇀m = [3, 4]. Its parametric equations are:

x = 1 + 3t
y = −2 + 4t

If we solve each equation for t, we obtain:

t = x − 1
3

and t = y + 2
4

Since the values of t must be the same in each parametric equation, these two
expressions are equal. Hence:

x − 1
3

= y + 2
4

or x − 1
3

= y − (−2)
4

This equation is a symmetric equation of the line.

A symmetric equation of a line has these properties:

• The numbers after the minus signs in the numerators are the coordinates of a
point on the line.

• The numbers in the denominators are the components of a direction vector
of the line.

Like parametric equations, the symmetric equation of a line is not unique. 
We can use the coordinates of any point on the line in the numerators of the
expressions, and we can use any scalar multiple of the direction vector in the
denominators.

A symmetric equation is a convenient way to write the equation of a line
through a given point and with a given direction vector.

Symmetric Equation of a Line in 2-space
Let A(a1, a2) be a fixed point on a line in R2 with direction vector−⇀m = [m1, m2] . Let P(x, y) be any point on the line. A symmetric equation
of the line is:

x − a1

m1
= y − a2

m2
where m1 ≠ 0, and m2 ≠ 0

Take Note

• What are some other possible vector and parametric equations for the
line in Example 1?

Something to Think About
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When parametric equations of a line are given, we can obtain a symmetric
equation by solving each equation for the parameter, as on the previous page.
As well, when a symmetric equation is given, we can determine the parametric
equations.

The symmetric equation of a line is x + 4
2

= y − 6
−3

.

a) Write parametric equations of the line.

b) Determine the coordinates of three different points on the line.

Solution

a) Let x + 4
2

= y − 6
−3

= t.

Then,
x + 4

2
= t

x = −4 + 2t

and y − 6
−3

= t

y = 6 − 3t

Parametric equations of the line are:

x = −4 + 2t
y = 6 − 3t

b) Use the parametric equations of the line obtained in part a.

Let t = 0 to obtain the point (–4, 6).
Let t = 1 to obtain the point (–2, 3).
Let t = 2 to obtain the point (0, 0).

These are the coordinates of three different points on the line.

Vector, parametric, and symmetric equations of a line in R2 represent a different
way of thinking about the equation of a line. When we use parametric equations
for two different lines in the same problem, we need to use different letters for
the parameters of each line.

Symmetric equations of two lines are given.

L1: x + 1
2

= y − 5
−1

and L2: x − 3
3

= y + 2
1

Find the coordinates of the point of intersection of L1 and L2.

Example 3

Example 2
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Solution

A point on L1 is (−1, 5) and its direction vector is [2, −1].
Parametric equations of L1 are:

x = −1 + 2t
y = 5 − t

A point on L2 is (3, −2) and its direction vector is [3, 1].
Parametric equations of L2 are:

x = 3 + 3s
y = −2 + s

The parametric equations of a line give the coordinates of every point on the
line. So, at the point of intersection of the lines, the values of x and y are
equal.

−1 + 2t = 3 + 3s
5 − t = −2 + s

➀
➁

Solve the linear system of equations for s and t.
From ➁ , s = 7 − t.
Substitute this expression for s in ➀ :

−1 + 2t = 3 + 3(7 − t)
−1 + 2t = 24 − 3t

t = 5

Substitute t = 5 into ➁ to obtain s = 2.

To determine the coordinates of the point of intersection, substitute s = 2 or
t = 5 into the parametric equations of the corresponding line. Using L2:

x = 3 + 3s
x = 9

and y = −2 + s
y = 0

The lines intersect at the point (9, 0).

When we are given two lines, not only can we find their point of intersection,
if it exists, but also the angle between them.

• In the solution of Example 3, the values of s and t at the point of
intersection are different. This illustrates why we use different letters 
for the parameters.

• What is another way to solve Example 3?

Something to Think About
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Determine if the lines L1: x − 1
1

= y − 3
5

and L2: x − 2
2

= 1 − y
3

intersect, and 

if so, calculate the angle between them.

Solution

Use the symmetric equation of each line to obtain the direction vectors −⇀m1 and −⇀m2, respectively.

L1: x − 1
1

= y − 3
5

has direction vector −⇀m1 = [1, 5].

L2: x − 2
2

= y − 2
−3

has direction vector −⇀m2 = [2, −3].

Since −⇀m1 is not a scalar multiple of −⇀m2, the lines are not parallel or
coincident, and so must intersect.
Use the dot product to determine the angle θ between the direction vectors.
−⇀m1 • −⇀m2 =

∣∣−⇀m1
∣∣∣∣−⇀m2

∣∣ cos θ

Rearrange. cos θ =
−⇀m1 • −⇀m2∣∣−⇀m1

∣∣∣∣−⇀m2
∣∣

= 2 − 15√
26

√
13

= −13
13

√
2

= −1√
2

θ = 135˚Thus,

The acute angle between the lines is 45˚.

1. Explain what it means for the coordinates of a point to satisfy the vector
equation and the parametric equations of a line.

2. A line has the following vector equation.

[x, y] = [2, −3] + t[5, 1]

a) State the coordinates of a point on the line.

b) State the coordinates of three other points on the line.

c) Write another vector equation of this line.

A

Exercises3.1

Example 4

3.1 REVISITING THE EQUATION OF A LINE IN 2-SPACE 131



3. A line has the following parametric equations.

x = −1 + 2t
y = 5 + t

a) State the coordinates of a point on the line.

b) State the coordinates of three other points on the line.

c) Write another set of parametric equations of this line.

4. A line has the following symmetric equation.
x + 4

5
= y − 1

−2

a) State the coordinates of a point on the line.

b) State the coordinates of three other points on the line.

c) Write another symmetric equation of this line.

5. A line contains the point A(7, –3) and has direction vector −⇀m = [−1, 2].
Determine:

a) a vector equation of the line.

b) parametric equations of the line.

c) a symmetric equation of the line.

6. Write parametric equations for:

a) the x-axis b) the y-axis

7. a) Write parametric equations of the line through A(3, –2) and B(6, 1).

b) Use your parametric equations to determine the coordinates of three other
points on the line.

c) Draw a diagram to illustrate the results of part b.

8. Find the coordinates of three different points on each line.

a) 2 − x
−4

= y + 1
3

b) x + 3
2

= 3 − y
5

9. Knowledge/Understanding Write vector, parametric, and symmetric 
(if possible) equations of the line determined by each set of conditions.

a) through the point A(4, 1) with direction vector −⇀m = [−3, 1]

b) through the points R(–6, 2) and S(4, –2)

c) through the point K(2, –3) and parallel to the y-axis

10. The equation of a line is 2x − 3y + 12 = 0. Write the equation of the line in:

a) slope y-intercept form b) parametric form

c) symmetric form

B
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11. A line passes through the points A(2, –4) and B(5, 2).

a) Write the equation of the line in:
i) parametric form.

ii) symmetric form.
iii) slope y-intercept form.
iv) standard form.

b) Describe the advantages of each form of equation.

12. Communication A line is parallel to one of the coordinate axes. Explain
what this tells you about each form of equation. Use examples to illustrate
your explanations.

a) vector equation

b) parametric equations

c) symmetric equation

d) slope y-intercept form

e) standard form

13. Determine which of the points A(–1, 1), B(–4, 3), C(7, 5), and D(5, –3) are
on the line with these parametric equations:

x = 2 − 3t
y = −1 + 2t

14. Three sets of parametric equations are given. Do these represent three
different lines, two different lines, or only one line? Explain.

Set 1: Set 2: Set 3:
x = 1 − 3t
y = 3 + 2t

x = 7 + 9s
y = −1 − 6s

x = −2 + 3k
y = 5 − 2k

15. Show that the following lines intersect. Find the coordinates of the point of
intersection, and the angle of intersection.

a) L1: x = 7 + 2t
y = 4 + t

and L2: x = −3 + 3s
y = 4 − s

b) L1: x + 3
3

= y + 1
4

and L2: x − 6
3

= y − 2
−2

16. Determine if the two lines intersect. If they do, find the coordinates of the
point of intersection.

a) L1: x = −5 + t
y = 2 − 3t

and L2: x = 4 − 2s
y = 6s

b) L1: x = 6 − 2t
y = −1 + t

and L2: x = 4 + 2s
y = −8 + s
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17. Determine the coordinates of the point where each line intersects the x- and
y-axes.

a) x = 2 + t
y = 5 − t

b) x + 1
3

= y − 4
2

18. Write vector and parametric equations of each line in R2.

a) x = 4 b) y = 3

c) y = 3x − 2 d) x + 2y + 4 = 0

19. A symmetric equation of a line is given. Write a set of parametric equations
of the line.

a) 5 − x
4

= 2 − y
3

b) x
2

= y − 1
−1

20. Determine the angle between the lines y = 4x + 2 and y = −x + 3.

21. Write the equation [x, y] = [2, 3] + s[1, −2] in the form y = mx + b.

22. Thinking/Inquiry/Problem Solving The direction angles and direction
cosines of a line are defined to be the direction angles and direction cosines
of its direction vector. Determine the direction angles of each line.

a) x − 2
1

= y + 3
1

b) x + 4
3

= y − 1
4

23. Application The line segment joining A(2, 3) to B(9, 2) is the hypotenuse
of a right triangle. The third vertex, C, lies on the line with these parametric
equations:

x = 2 + 2t
y = 8 − t

Determine the coordinates of C. Illustrate with a diagram.

24. Repeat exercise 23 for each situation.

a) Line segment AC is the hypotenuse of the right triangle.

b) Line segment BC is the hypotenuse of the right triangle.

25. A line passes through the point A(0, 4). Its first direction angle is 60˚.

a) What possible second direction angles can it have?

b) Find parametric equations of the line for each set of direction angles.

c) Draw a diagram illustrating the lines in part b.

26. Given the vectors −⇀a =
−⇀
OA and 

−⇀
b =

−⇀
OB, show that the vector equation of

the line containing the points A and B has the form −⇀p = s−⇀a + t
−⇀
b , where

s + t = 1.

C
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The methods that were used in Section 3.1 to write the vector, parametric,
and symmetric equations of a line in R2 extend to lines in R3. For example,
the diagram below shows the line passing through the point A(–2, 5, 3) with
direction vector −⇀m = [2, 4, 1] . The direction vector is shown with its tail 
at the origin. The line is parallel to this vector.

We will determine various forms of the equation(s) of this line.

Vector equation

⇀m

z

y

x

O
2

4
1

⇀a

⇀p

A(−2, 5, 3)

⇀tm P(x, y, z)

The Equation of a Line in 3-space3.2
Let P(x, y, z) be any point on this line. Visualize P moving back and forth along
the line. As it moves, points O, A, and P always form a triangle in which the
triangle law is satisfied:

−⇀
OP =

−⇀
OA +

−⇀
AP

Since 
−⇀
AP is collinear with −⇀m , we know that 

−⇀
AP = t−⇀m , where t is any scalar. 

Let 
−⇀
OA = −⇀a and 

−⇀
OP = −⇀p . Then we can write the above equation as:

−⇀p = −⇀a + t−⇀m
[x, y, z] = [−2, 5, 3] + t[2, 4, 1]or ➀

Equation ➀ is a vector equation of the line. Vector equations are not unique
because any point on the line and any scalar multiple of its direction vector 
can be used.

Parametric equations
On the right side of equation ➀ , we can expand the scalar multiple and add the
two vectors to obtain:

[x, y, z] = [−2 + 2t, 5 + 4t, 3 + t]
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Since these vectors are equal, corresponding components are equal.

x = −2 + 2t
y = 5 + 4t
z = 3 + t


 ➁

Equations ➁ are parametric equations of the line. As in R2, parametric
equations of a line have these properties:

• The constant terms on the right side are the coordinates of a point on the line.
• The coefficients of t are the components of a direction vector of the line.

Parametric equations are very useful because they are formulas for the
coordinates of points on the line. For example, if t = 1, we obtain (0, 9, 4); if
t = 2, we obtain (2, 13, 5); if t = −1, we obtain (–4, 1, 2), and so on. All these
points are on the line.

As with lines in R2, parametric equations of a line in R3 are not unique. In the
above equations, we could replace the constant terms on the right side with the
coordinates of any point on the line. We can also replace the coefficients of t
with the components of any scalar multiple of the direction vector.

We can obtain additional information about the line from its parametric
equations. For example, we can determine where it intersects the coordinate
planes. For points on the xz-plane, y = 0. Substitute this value of y into the
second parametric equation to obtain 0 = 5 + 4t, so t = −5

4
. Substitute this

value of t into the other two parametric equations to obtain x = −9
2

and z = 7
4

. 

Hence, the line intersects the xz-plane at 
(
−9

2
, 0, 7

4

)
.

Symmetric equations
If we solve each of the three parametric equations for t, the results will all be
equal. We obtain these symmetric equations of the line:

x + 2
2

= y − 5
4

= z − 3
1

➂ or x − (−2)
2

= y − 5
4

= z − 3
1

t = −4 t = −3 t = −2

t = −1 t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10

⇀m

z

y

x

O
2

4
1

⇀a
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As in R2, symmetric equations of a line have these properties:

• The numbers after the minus signs in the numerators are the coordinates of a
point on the line.

• The numbers in the denominators are the components of a direction vector of
the line.

Like parametric equations, symmetric equations of a line are not unique. We
can use the coordinates of any point on the line in the numerators of the
expressions, and we can use any scalar multiple of the direction vector in the
denominators.

Symmetric equations are a convenient way to write the equations of a line.
However, parametric equations are more useful in many problems.

Symmetric equations of a line are given.
x − 3

2
= y + 4

−1
= z − 1

3

a) Write parametric equations of the line.

b) Determine the coordinates of three different points on the line.

Solution

a) Let x − 3
2

= y + 4
−1

= z − 1
3

= t .

Then,
x − 3

2
= t

x = 3 + 2t

and y + 4
−1

= t

y = −4 − t

and z − 1
3

= t

z = 1 + 3t

Parametric equations of the line are:

x = 3 + 2t
y = −4 − t
z = 1 + 3t

b) Use the parametric equations from part a.

Let t = 0 to obtain the point (3, −4, 1).
Let t = 1 to obtain the point (5, −5, 4).
Let t = 2 to obtain the point (7, −6, 7).

These are the coordinates of three different points on the line.

Example 1
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In the diagram on page 135, suppose the direction vector had been−⇀m = [2, 4, 0] . The z-component, 0, tells us that the line is parallel to the 
xy-plane and 3 units above it. The parametric equations of the line are:

x = −2 + 2t
y = 5 + 4t
z = 3

Although we can write parametric equations of this line, we cannot write
symmetric equations because one of the denominators would be 0. Instead 
we write:

x + 2
2

= y − 5
4

, z = 3

Although these are not symmetric equations, we can still say that they are
equations of the line.

Equations of a Line in 3-space
Let A(a1, a2, a3) be a fixed point on a line in R3 with direction vector−⇀m = [m1, m2, m3]. Let P(x, y, z) be any point on the line. The equations
of the line can be written in the following forms.

Vector equation

[x, y, z] = [a1, a2, a3] + t[m1, m2, m3]

Parametric equations

x = a1 + tm1

y = a2 + tm2

z = a3 + tm3

Symmetric equations
x − a1

m1
= y − a2

m2
= z − a3

m3
where m1 ≠ 0, m2 ≠ 0, and m3 ≠ 0

Take Note

• Although there are three expressions in symmetric equations of a line,
there are actually only two equations. For example, the symmetric
equations in Example 1 could be written as:

x − 3
2

= y + 4
−1

and y + 4
−1

= z − 1
3

Since we can use these equations to show that x − 3
2

= z − 1
3

, this is not
considered to be a third equation.

Something to Think About
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In three dimensions, there are three intersection possibilities for two 
distinct lines.

Symmetric equations of two lines are given. Show that the lines are parallel.

L1: x − 2
1

= y + 3
2

= z − 4
−3

and L2: x + 1
−2

= y − 5
−4

= z
6

Solution

A direction vector of L1 is [1, 2, –3] and of L2 is [–2, –4, 6]. These are
collinear since [−2, −4, 6] = −2[1, 2, −3]. Therefore, the lines are either
parallel or they coincide. To show that they do not coincide, show that a
point on one of the lines is not on the other line.

From the symmetric equations, the coordinates of a point on L1 are 
(2, –3, 4). Substitute these coordinates into the expressions of the 
symmetric equations of L2:

t = x + 1
−2

= 2 + 1
−2

t = −3
2

t = y − 5
−4

= −3 − 5
−4

t = 2

t = z
6

= 4
6

t = 2
3

For this point to lie on L2, and for both lines to coincide, all these results
must be equal. Since they are not, L1 and L2 are parallel.

Symmetric equations of two lines are given.

L1: x − 3
1

= y + 7
−2

= z − 5
4

and L2: x + 7
3

= y + 8
1

= z − 4
−1

a) Show that the lines intersect, and determine the coordinates of the point 
of intersection.

b) Write symmetric equations of another line L3 such that L1 and L3 are
skew lines. Explain why they are skew lines.

Example 3

Example 2

z

y
L2

L1

x

z

y

L1

x

L2
z

y

L2
L1

x

The line may neither
intersect nor be parallel.
These are called skew lines.

The lines may be parallel.The lines may intersect.



Solution

a) Direction vectors of the lines are [1, –2, 4] and [3, 1, –1]. Since these are
not collinear, the lines either intersect or they are skew lines. Write the
equations of L1 and L2 in parametric form, using different parameters for
each line.

L1: x = 3 + s
y = −7 − 2s
z = 5 + 4s

and L2: x = −7 + 3t
y = −8 + t
z = 4 − t

At a point of intersection, the values of x are equal, and similarly for the
values of y, and z.

3 + s = −7 + 3t ➀
−7 − 2s = −8 + t ➁
5 + 4s = 4 − t ➂

These equations form a linear system that can be solved in different ways.

Solve ➁ and ➂ , and determine if the solution satisfies ➀ .
Add ➁ and ➂ to obtain −2 + 2s = −4, so s = −1.
Substitute s = −1 into ➁ to obtain −5 = −8 + t , so t = 3.
The solution of equations ➁ and ➂ is s = −1, t = 3.

Substitute these values of s and t in ➀ :

L.S. = 3 + s
= 3 + (−1)
= 2

R.S. = −7 + 3t
= −7 + 9
= 2

Since these values are equal, the equations ➀ , ➁ , and ➂ have a solution,
and the lines L1 and L2 intersect. To determine the coordinates of the point
of intersection, substitute s = −1 or t = 3 into the parametric equations of
the corresponding line. Using L1:

x = 3 + s
= 3 − 1
= 2

y = −7 − 2s
= −7 − 2(−1)
= −5

z = 5 + 4s
= 5 + 4(−1)
= 1

The lines intersect at the point (2, –5, 1).

b) Consider the line with the following symmetric equations:

L3: x
3

= y + 8
1

= z − 4
−1

These equations are the same as those of L2, except for the numerator 
in the first expression. If the solution in part a was repeated, the only 
difference would occur when s = −1, t = 3 are substituted into equation ➀ .
This time, that equation would be 3 + s = 3t, and the equation is not 
satisfied. This indicates that equations ➀ , ➁ , and ➂ have no solution, and 
the lines L1 and L3 do not intersect. They are skew lines.
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1. A line has the following vector equation.

[x, y, z] = [5, −4, 1] + t[3, 2, −1]

a) State the coordinates of a point on the line.

b) State the coordinates of three other points on the line.

c) Write another vector equation of this line.

2. A line has the following parametric equations.

x = 2 + t
y = −3 + 2t
z = 4 − 3t

a) State the coordinates of a point on the line.

b) State the coordinates of three other points on the line.

c) Write another set of parametric equations of this line.

3. A line has the following symmetric equations.
x − 4

2
= 3 − y

1
= z + 2

3

a) State the coordinates of a point on the line.

b) State the coordinates of three other points on the line.

c) Write other symmetric equations of this line.

4. Does the point D(1, −2, 6) lie on the line with symmetric equations 
x − 4

3
= y + 2

1
= z − 6

2
? Explain.

5. A line contains the point A(3, –2, 5) and has direction vector−⇀m = [−1, 4, −3] . Determine:

a) a vector equation of the line.

b) parametric equations of the line.

c) symmetric equations of the line.

6. Write parametric equations for:

a) the x-axis b) the y-axis c) the z-axis

7. Visualize your classroom as a large rectangular box. Identify two edges of
the box that illustrate skew lines.

A

Exercises3.2

3.2 THE EQUATION OF A LINE IN 3-SPACE 141



8. a) Write parametric equations of the line through A(5, 1, –3) and B(4, 5, –1).

b) Use your parametric equations to determine the coordinates of three other
points on the line.

9. Find the coordinates of three different points on each line.

a) x − 2
1

= 3 − y
2

= z + 1
−1

b) x − 1
3

= y
1

= 1 − z
2

c) x + 3
−2

= y − 5
1

, z = 2

d) x = −4, y + 2
3

= z − 3
4

10. Refer to exercise 9. Explain what the following tell you about the position of
the line in R3.

a) In part c, z = 2.

b) In part d, x = −4.

11. Knowledge/Understanding Write vector, parametric, and symmetric
equations of the line determined by each set of conditions.

a) through A(2, –1, 3) with direction vector −⇀m = [−1, 3, 5]

b) through A(4, –2, 1) and B(–1, 0, 3)

c) through C(5, –1, 0) and D(5, 3, –4)

d) through M(3, –1, –1) and parallel to the x-axis

e) through N(–2, 0, 5) and parallel to the y-axis

12. Determine which of the points A(–5, 2, 7), B(3, 0, –1), C(–1, –1, –2),

and D(4, –2, 3) are on the line with symmetric equations x + 3
−2

= y
1

= z − 1
3

.

13. Three sets of parametric equations are given. Do these represent three
different lines, two different lines, or only one line? Explain.

Set 1: Set 2: Set 3:
x = 1 + 2t
y = 3 − t
z = 7 + 4t

x = −5 − 2s
y = 6 + s
z = −5 − 4s

x = 5 + 4k
y = 1 − 2k
z = 15 + 8k

14. Show that the following lines intersect and determine the coordinates of the
point of intersection.

a) L1: x + 1
3

= y − 2
−1

= z
4

and L2: x + 6
2

= 8 − y
5

= z + 1
−3

b) L1: x − 1
2

= y + 3
1

, z = −3 and L2: x − 2
3

= y + 1
2

= z
1

B
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15. Determine if the two lines intersect. If they do, find the coordinates of the
point of intersection.

a) L1: x = 1 + 2t
y = −1 − t
z = 3t

and L2: x = 1 + 3s
y = 2 + 2s
z = 3 + 4s

b) L1: x + 1
1

= y − 1
2

= 3 − z
2

and L2: 5 − x
2

= y − 3
1

= z + 3
1

c) L1: x − 1
2

= y − 3
3

= z − 5
4

and L2: x + 1
2

= y + 4
−1

= z + 2
1

16. Application The diagram (below left) shows a cube with vertices
(±2, ±2, ±2). Edge AB is shown in colour.

a) Choose another edge that passes through either A or B. Write parametric
equations of the lines through each edge. Solve the equations to verify
that they both pass through A.

b) Choose an edge that is parallel to AB. Write parametric equations of the
lines through each edge. Attempt to solve the equations. Explain why the
solution tells you that the lines are parallel and do not intersect.

c) Choose an edge that is not parallel to AB and does not pass through either
A or B. Write parametric equations of the lines containing the two edges.
Attempt to solve the equations. Explain why the solution tells you that
the lines are skew.

17. The diagram (above right) shows the cube in exercise 16 and the solid
formed by joining the vertices (2, 2, 2), (2, –2, –2), (–2, 2, –2), and 
(–2, –2, 2) in all possible ways. This solid is called a regular tetrahedron.

a) Write parametric equations of the 6 lines containing the edges of 
the tetrahedron.

b) Choose any two edges that meet at a vertex. Calculate the angle of
intersection of these edges.

z

y

x

A

B

z

y

x
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18. On page 138, we replaced the direction vector, −⇀m = [2, 4, 1] , with−⇀m = [2, 4, 0] . This meant that the line passed through A and was parallel 
to the xy-plane. Consider each situation below. Describe the line. What
happens to the parametric and symmetric equations?

a) −⇀m = [2, 4, 1] is replaced with −⇀m = [2, 0, 1] .

b) −⇀m = [2, 4, 1] is replaced with −⇀m = [0, 4, 1] .

c) −⇀m = [2, 4, 1] is replaced with −⇀m = [2, 0, 0] .

19. Communication The points where a line intersects the coordinate planes
are significant.

a) Suppose you know the coordinates of a point on a line and its direction
vector. Describe how you can determine the coordinates of the points
where the line intersects the xy-, xz-, and yz-planes.

b) Illustrate your answer to part a by finding the coordinates of the points
where each line intersects the coordinate planes.

i) x − 5
1

= y + 2
3

= z − 1
−2

ii) x + 6
2

= y − 2
3

, z = −2

20. A line is parallel to one of the coordinate planes, but not to any of the axes.
Explain what this tells you about each form of equation. Use examples to
illustrate your explanations.

a) parametric equations b) symmetric equations

21. A line is parallel to one of the coordinate axes. Explain what this tells you
about each form of equation. Use examples to illustrate your explanations.

a) parametric equations b) symmetric equations

22. Symmetric equations of two lines are given.

L1: x − 4
2

= y − 8
3

= z + 1
−4

and L2: x − 16
−6

= y − 2
1

= z + 1
2

a) Show that L1 and L2 intersect.

b) Find parametric equations of the line that passes through the point of
intersection of L1 and L2, and that is perpendicular to both.

23. Thinking/Inquiry/Problem Solving  Find parametric equations of a line
that intersects both L1 and L2 at right angles.

L1: [x, y, z] = [4, 8, −1] + t[2, 3, −4] and L2: x − 7
−6

= y − 2
1

= z + 1
2
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24. A line has direction angles 60˚, 45˚, 60˚ and passes through the point 
(–2, 1, 3). Determine symmetric equations of the line.

25. A line passes through the point A(0, 0, 4). Its first two direction angles 
are both 60˚.

a) What possible third direction angles can it have?

b) Find parametric equations of the line for each set of direction angles.

c) Draw a diagram illustrating the lines in part b.

26. Suppose −⇀p = −⇀a + t−⇀m , where −⇀p , −⇀a , and −⇀m are non-zero vectors.

a) Prove that −⇀p × −⇀m = −⇀a × −⇀m .

b) Provide a geometric interpretation of the result in part a.

27. On pages 135 and 136, the line was described using one vector equation and
three parametric equations. On page 138 we showed that, in symmetric
form, there are two equations. With respect to this example, discuss the
question:

a) How many equations are needed to describe a line?

b) Explain why two is the best answer to part a and why there is no
inconsistency in having one vector equation and three parametric
equations.

28. Refer to the diagram on page 135.

a) Explain why (−⇀p − −⇀a ) × −⇀m =
−⇀
0 is the equation of the line passing

through the point A and parallel to the vector −⇀m .

b) Substitute −⇀p = [x, y, z], −⇀a = [−2, 5, 3] , and −⇀m = [2, 4, 1] into the
expression in part a and determine the cross product. Use the result to
determine symmetric equations of the line. Explain.

29. Consider the following parametric equations of a line passing through 

A(a1, a2, a3) with direction vector −⇀m = [m1, m2, m3]:

x = a1 + tm1

y = a2 + tm2

z = a3 + tm3

Explain the geometric significance of t if m1, m2, and m3 are the direction
cosines of the line.

C



In this section, we will determine the equations of planes in R3. A plane is
determined by a point and two non-collinear vectors. For example, the diagram
below shows the plane passing through the point A(–2, 5, 3) and contains the
vectors −⇀u = [2, 4, 1] and −⇀v = [1, 4, 2] . The line defined by A and −⇀u is the
same line as the one in the diagram on page 135. The vector −⇀v determines a
plane containing this line. The plane is tilting upwards away from the viewer,
as indicated by the triangle formed by the vectors −⇀u and −⇀v when their tails
are at the origin.

The vector equation

z

y

x

O

A

P

C

⇀a

⇀p

⇀v
⇀u

⇀u

⇀v

The Equation of a Plane3.3
Let P(x, y, z) be any point on this plane. Visualize P moving around the plane
in any position. As it moves, points O, A, and P always form a triangle in which
the triangle law is satisfied:

−⇀
OP =

−⇀
OA +

−⇀
AP

Since P is on the plane, we know that 
−⇀
AP is a linear combination of −⇀u and −⇀v .

Hence,
−⇀
AP = s−⇀u + t−⇀v where s and t are any scalars. Therefore, we can write

the above equation as:

or

−⇀p = −⇀a + s−⇀u + t−⇀v
[x, y, z] = [−2, 5, 3] + s[2, 4, 1] + t[1, 4, 2] ➀

Equation ➀ is the vector equation of the plane. There are two parameters,
s and t. These are needed to specify how we get from A to P on the plane by 

combining scalar multiples of −⇀u and −⇀v . In the diagram shown, we go in the 

opposite direction of −⇀u and 4 times its length to C, then in the direction of −⇀v
and twice its length to P. For the point P shown, s = −4 and t = 2. We can use
➀ to determine the coordinates of point P. They are (−8, −3, 3).
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Parametric equations
On the right side of equation ➀ on page 146, we expand
the scalar multiples and add the two vectors to obtain:

[x, y, z] = [−2 + 2s + t, 5 + 4s + 4t, 3 + s + 2t]

Since these vectors are equal, the corresponding
components are equal.

x = −2 + 2s + t
y = 5 + 4s + 4t
z = 3 + s + 2t


 ➁

Equations ➁ are parametric equations of the plane. There
are two parameters, s and t, because the plane is two-
dimensional. Parametric equations of a plane have these
properties:

• The constant terms on the right side are the coordinates
of a point on the plane.

• The coefficients of s and t are the components of two
direction vectors on the plane.

Like parametric equations of a line, parametric equations
of a plane are useful because they are formulas for the
coordinates of points on the plane. For example, if we 
substitute s = 2 and t = −1, we obtain (1, 9, 3). This point 
is on the plane.

Parametric equations of a plane are not unique. In the above parametric
equations, we could replace the constant terms on the right side with the
coordinates of any point on the plane. We can also replace the coefficients 
of s and t with the components of any non-collinear vectors on the plane.

Vector Equation of a Plane in 3-space
A plane in R3 is determined by a point A(a1, a2, a3) and two 

non-collinear vectors −⇀u = [u1, u2, u3] and −⇀v = [v1, v2, v3] . 
The vector equation of the plane is:

[x, y, z] = [a1, a2, a3] + s[u1, u2, u3] + t[v1, v2, v3]

The parameters s and t can represent any real numbers.

Take Note

John von
Neumann
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Find parametric equations of the plane that passes through the three points
A(2, –3, 1), B(0, 4, –1), and C(3, 1, –4).

Solution

Choose any two non-collinear vectors on the plane.
−⇀
AB = [0 − 2, 4 − (−3), −1 − 1]
−⇀
AB = [−2, 7, −2]

and
−⇀
AC = [3 − 2, 1 − (−3), −4 − 1]
−⇀
AC = [1, 4, −5]

Using point A and these two vectors, parametric equations of the plane are:

x = 2 − 2s + t
y = −3 + 7s + 4t
z = 1 − 2s − 5t

Scalar equation
To determine an equation of a plane without parameters, we can eliminate the
parameters from its parametric equations (see exercise 23). However, there is a
more efficient and more elegant method. We will apply it to the plane described
on page 146.

The plane passes through Q(–2, 5, 3) and contains the vectors −⇀u = [2, 4, 1]

and −⇀v = [1, 4, 2] . The vector −⇀u × −⇀v is perpendicular to the plane. We
determine this cross product.

• What are some other parametric equations of the plane in Example 1?

Something to Think About

Example 1

Parametric Equations of a Plane in 3-space
A plane in R3 is determined by a point A(a1, a2, a3) and two 

non-collinear vectors −⇀u = [u1, u2, u3] and −⇀v = [v1, v2, v3] . 
Parametric equations of the plane are:

x = a1 + su1 + tv1

y = a2 + su2 + tv2

z = a3 + su3 + tv3

The parameters s and t can represent any real numbers.

Take Note
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The components of −⇀u × −⇀v are:

(4)(2) − (4)(1) = 4
(1)(1) − (2)(2) = −3
(2)(4) − (1)(4) = 4

Therefore, −⇀u × −⇀v = [4, −3, 4] . Since it is perpendicular to the plane, this
vector is called the normal vector of the plane.

To determine the equation of the plane, let P(x, y, z) be any point on the plane. 

Then the vector 
−⇀
QP = [x + 2, y − 5, z − 3] lies on the plane and is perpendicular 

to the normal vector. Hence,
−⇀
QP • [4, −3, 4] = 0

[x + 2, y − 5, z − 3] • [4, −3, 4] = 0
4(x + 2) − 3(y − 5) + 4(z − 3) = 0

4x + 8 − 3y + 15 + 4z − 12 = 0
4x − 3y + 4z + 11 = 0

The equation of the plane is 4x − 3y + 4z + 11 = 0. This equation is called the
scalar equation of the plane. Notice that the coefficients of x, y, and z are the
components of the normal vector.

We can use the above method to determine the equation of the plane passing
through the point Q(x1, y1, z1) with normal vector [A, B, C]. Let P(x, y, z) be 

any point on the plane. Then the vector 
−⇀
QP = [x − x1, y − y1, z − z1] lies on the

plane and is perpendicular to the normal vector.

z

y

x

O

⇀n =[A, B, C]

Q (x1, y1, z1)

P (x, y, z)

4

4

1

2

2

1

4

4
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Hence,
−⇀
QP • [A, B, C] = 0

[x − x1, y − y1, z − z1] • [A, B, C] = 0
A(x − x1) + B(y − y1) + C(z − z1) = 0

Ax + By + Cz + (−Ax1 − By1 − Cz1) = 0

This equation has the form Ax + By + Cz + D = 0, where A, B, and C are the
components of the normal vector. This is the general form of the scalar equation
of a plane. Instead of memorizing the expression in the brackets, it is easier to
remember that D is a constant that needs to be determined in each particular
problem.

Find the scalar equation of the plane that has normal vector [4, –3, 2] and
that passes through the point A(6, 3, −4).

Solution

Since the normal vector is [4, –3, 2], the scalar equation of the plane has the
form 4x − 3y + 2z + D = 0 for some number D.

Since the point A(6, 3, –4) lies on the plane, these coordinates satisfy the
equation. Substitute x = 6, y = 3, and z = −4 to obtain:

4(6) − 3(3) + 2(−4) + D = 0
D = −7

The scalar equation of the plane is 4x − 3y + 2z − 7 = 0.

A plane passes through the points A(–1, 3, –2), B(–1, 2, –1), and C(4, 1, –2). 

a) Find a vector equation of the plane.

b) Find a set of parametric equations of the plane.

c) Determine the scalar equation of the plane.

d) Determine if the point P(3, –1, 1) lies on the plane.

Example 3

Example 2

Scalar Equation of a Plane
The scalar equation of a plane has the form Ax + By + Cz + D = 0, where
A, B, and C are the components of its normal vector, −⇀n = [A, B, C].

Take Note
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Solution

The key to finding any of the forms of the equation of the plane is to
determine a point and two vectors that lie on the plane. Use the point 

A(–1, 3, –2) and the vectors 
−⇀
AB = [0, −1, 1] and 

−⇀
AC = [5, −2, 0].

a) A vector equation of the plane is:
−⇀p = [−1, 3, −2] + s[0, −1, 1] + t[5, −2, 0]

b) A set of parametric equations of the plane is:

x = −1 + 0s + 5t
y = 3 − 1s − 2t
z = −2 + 1s + 0t




or



x = −1 + 5t
y = 3 − s − 2t
z = −2 + s

c) Determine 
−⇀
AB ×

−⇀
AC:

The components of 
−⇀
AB ×

−⇀
AC are:

(−1)(0) − (−2)(1) = 2
(1)(5) − 0 = 5
(0)(−2) − (5)(−1) = 5

−⇀
AB ×

−⇀
AC = [2, 5, 5]

The scalar equation of the plane has the form 2x + 5y + 5z + D = 0 . To
determine D, substitute the coordinates of one of the points on the plane,
say, A(–1, 3, –2) to obtain:

2(−1) + 5(3) + 5(−2) + D = 0
D = −3

The scalar equation of the plane is 2x + 5y + 5z − 3 = 0.

d) To determine if the point P(3, –1, 1) lies on the plane, check if these
coordinates satisfy the scalar equation.

L.S. = 2x + 5y + 5z − 3
= 2(3) + 5(−1) + 5(1) − 3
= 3

R.S. = 0

Since the coordinates of P do not satisfy the equation, P does not lie on
the plane.

−1

−2

1

0

0

5

−1

−2
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1. A plane has the following vector equation:
−⇀p = [2, 6, −5] + s[−1, 3, 1] + t[4, 2, −1]

a) State the coordinates of a point on the plane.

b) State the coordinates of three other points on the plane.

c) Write another vector equation of this plane.

2. A plane has the following parametric equations:

x = 3 − 2s + 2t
y = 1 + 3s + t
z = 5 − s − 2t

a) State the coordinates of a point on the plane.

b) State the coordinates of three other points on the plane.

c) Write another set of parametric equations of this plane.

3. A plane has the scalar equation 2x − y + 3z − 6 = 0.

a) Determine the coordinates of three points that lie on this plane.

b) Write a set of parametric equations of the plane.

4. Consider these four points:

A(1, 1, 2), B(3, –2, 2), C(5, –1, 5), D(4, –2, 5)

Which of these points lie on the plane with scalar equation
x + 2y + z − 5 = 0?

5. Determine if the point A(5, 2, –1) lies on the plane with vector equation 
−⇀p = [2, 1, 0] + s[1, −1, 2] + t[3, 0, 1].

6. Determine if the point B(2, 3, –4) lies on the plane with these parametric
equations:

x = 3 + s − t
y = 1 + 5s + 2t
z = 2 − 3s − 6t

7. Write vector and parametric equations of the plane containing:

a) the point A(2, 1, 3) and the vectors −⇀m = [−1, 3, 4] and −⇀n = [2, 0, −1] .

b) the points B(–2, 5, 1), C(3, 0, –4), and D(7, 5, –2).

c) the points E(–3, 1, 1) and F(–4, 0, 3), and the vector −⇀v = [1, 2, 3] .

A

Exercises3.3



8. Consider the plane with scalar equation 4x − y + 2z + 8 = 0.

a) Write the normal vector −⇀n .

b) By inspection, determine the coordinates of two different points on this
plane. Call these points A and B.

c) Determine 
−⇀
AB.

d) Show that the vectors 
−⇀
AB and −⇀n are perpendicular.

9. Explain why four points may or may not be coplanar.

10. Write a vector equation of the plane passing through the given points.

a) A(1, 2, –3), B(5, 1, 0), C(3, 2, –6)

b) P(8, –4, 2), Q(4, –3, 1), R(–2, 6, 2)

11. Write a set of parametric equations of the plane passing through the 
given points.

a) A(7, –3, 1), B(0, –4, 3), C(1, –1, 0)

b) P(–2, 6, 1), Q(3, –3, 1), R(2, 5, –5)

12. Find the scalar equation of the plane through the given point R and with the
given normal vector −⇀n .

a) R(–3, 1, 2), −⇀n = [4, −2, 1]

b) R(5, 0, –3), −⇀n = [1, −1, 4]

13. Find the equation of the plane that is parallel to the plane 3x − y + 2z − 10 = 0
and that passes through each point.

a) (0, 0, 0) b) (1, 2, 3) c) (–1, 0, 1)

14. Knowledge/Understanding A plane in R3 has scalar equation
3x + 2y − 12 = 0.

a) Write the normal vector of this plane.

b) The equation can be written as 3x + 2y + 0z − 12 = 0. What is the
geometric significance of the fact that the coefficient of z is 0 in this
equation?

c) Describe how the plane compares with the line in R2 that has scalar
equation 3x + 2y − 12 = 0.

15. Find the scalar equation of the plane passing through the given points.

a) A(1, 1, 1), B(0, 2, 3), C(–1, 0, 1)

b) D(0, 1, 2), E(1, 2, 1), F(–1, –1, 2)

c) R(3, 5, 2), S(0, 5, –1), T(1, 5, –3)

B
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16. Thinking/Inquiry/Problem Solving In each part of exercise 15, the three
given points are not collinear. Find out what happens if you try to find the
scalar equation of a plane passing through three collinear points. Make up
your own example to investigate this situation.

17. The three points A(1, 0, 1), B(3, –2, 0), and C(2, 1, 5) are given.

a) Write two different vector equations of the plane containing A, B, and C.

b) Write two different sets of parametric equations of the plane containing
A, B, and C.

c) Determine the scalar equation of the plane containing A, B, and C.

18. Communication

a) Define the angle of intersection of two planes.

b) Use your definition to calculate the angle of intersection of the planes:
i) 2x + y − 3z + 7 = 0 and 4x − y + 7z + 5 = 0

ii) 2x − y − 2z + 5 = 0 and 3x + 4z + 6 = 0

19. Find the equation of a plane, every point of which is equidistant from the
points A(1, 1, 0) and B(5, 3, –2).

20. Application The diagram below shows a cube with vertices (±2, ±2, ±2).
A plane passing through the midpoints of 6 of its 12 edges forms a regular
hexagon inside the cube.

a) Find the equation of the plane.

b) The midpoints of 3 of the other 6 edges lie on one side of the plane in the
diagram. Find the equation of the plane that passes through these three
midpoints.

c) Find the equation of the plane that passes through the remaining 
three midpoints.

d) What geometric property do the planes in part a, b, and c have?

21. Prove that the four points A(1, 6, 3), B(–2, –4, –1), C(3, 9, 4), and 
D(–3, 0, 1) are coplanar.

z

y

x
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22. Determine the equation of the plane that contains the points A(1, 2, 3) and
B(2, 3, –1), and that is perpendicular to the plane 3x + y + z + 1 = 0.

23. Refer to the parametric equations of the plane given on page 147. Determine
the scalar equation of this plane by eliminating the parameters from these
equations. Compare the result with the scalar equation on page 149.

24. Find the equation of the locus of the point P such that P is 
equidistant from the points A(1, 2, 3) and B(3, 2, 4).

25. The point A(4, –1, 3) is given.

a) Find the equation of the locus of the point P such that 
−⇀
AP •

−⇀
OA = 0.

b) Describe the locus.

26. Compare the general form of the scalar equation of a plane,
Ax + By + Cz + D = 0, with the general form of the equation 
of a line in R2, Ax + By + C = 0.

a) Explain how the coefficients of the terms containing the variables play a
similar role. Use examples to illustrate your explanation.

b) Why are both equations called linear equations, even though only one of
them is the equation of a line?

27. Given the vectors −⇀a =
−⇀
OA,

−⇀
b =

−⇀
OB, and −⇀c =

−⇀
OC, show that the vector

equation of the plane containing the points A, B, and C has the form 
−⇀p = r−⇀a + s

−⇀
b + t−⇀c , where r + s + t = 1.

28. Refer to exercise 20.

a) Find the equation of another plane passing through the midpoints of 
6 edges of the cube.

b) How many planes are there in all that pass through the midpoints of 6 of
the 12 edges of the cube? Write their equations in a systematic way.

C

Locus

Student Reference
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In three dimensions, there are three intersection possibilities for a line and 
a plane.

We can use the equations of the line and the plane to distinguish these 
three possibilities.

The plane 4x − 5y − 4z + 2 = 0 and the parametric equations of lines are given.
Determine the points that lie on each line and the plane.

a) x = 5 + 2t
y = −4 − 3t

b) x = 1 + 2t
y = 2 − 4t

c) x = 5 + 3t
y = −2 + 4t

Example 1

L1

x

y

z

L1

x

y

z

L1

x

y

z

The line may be parallel to
the plane and not intersect it.

The line may lie on the plane.The line may intersect the
plane in only one point.

Problems Involving Lines and Planes3.4
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z = 1 + t z = −1 + 7t z = 9 − 2t

Solution

Substitute the expressions for x, y, and z from the parametric equations into
the equation of the plane.

a) 4x − 5y − 4z + 2 = 0

Substitute from the parametric equations.
4(5 + 2t) − 5(−4 − 3t) − 4(1 + t) + 2 = 0

20 + 8t + 20 + 15t − 4 − 4t + 2 = 0
19t + 38 = 0

t = −2

Substitute t = −2 into the parametric equations to obtain:

x = 5 + 2t
= 5 + 2(−2)
= 1

y = −4 − 3t
= −4 − 3(−2)
= 2

z = 1 + t
= 1 − 2
= −1

The line intersects the plane at the point (1, 2, –1).



b) 4x − 5y − 4z + 2 = 0

Substitute from the parametric equations.
4(1 + 2t) − 5(2 − 4t) − 4(−1 + 7t) + 2 = 0

4 + 8t − 10 + 20t + 4 − 28t + 2 = 0
0t = 0

Any real value of t satisfies this equation. Therefore, the expressions for x,
y, and z satisfy the scalar equation of the plane for all values of t. This
means that every point on the line lies on the plane. That is, the line lies
on the plane.

c) 4x − 5y − 4z + 2 = 0

Substitute from the parametric equations.
4(5 + 3t) − 5(−2 + 4t) − 4(9 − 2t) + 2 = 0

20 + 12t + 10 − 20t − 36 + 8t + 2 = 0
0t = 4

No value of t satisfies this equation. Therefore, the expressions for x, y,
and z do not satisfy the scalar equation of the plane for any value of t.
This means that there are no points on the line that are also on the plane.
That is, the line does not lie on the plane. It must be parallel to the plane.

In Section 3.2, we defined skew lines to be lines in three dimensions that are
not parallel and do not intersect. Two skew lines may lie in parallel planes. 
The next example shows how to determine the equations of these planes.

Two lines L1 and L2 have the following symmetric equations.

L1: x
3

= y − 2
1

= z − 1
1

and L2: x − 1
2

= y + 3
−1

= z
1

a) Show that L1 and L2 are skew lines.

b) Determine the equations of two parallel planes that contain L1 and L2.

Example 2

• In Example 1, visualize the normal vector of the plane and the direction
vectors of the lines. How could we use these vectors to determine the
following?

– The line in part a intersects the plane in only one point.
– The lines in parts b and c either lie on the plane or are parallel to 

the plane.

Something to Think About
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Solution

a) By inspection, the direction vectors, [3, 1, 1] and [2, –1, 1], of the lines
are not collinear. Hence, the lines L1 and L2 are not parallel.

Now show that the lines do not intersect. Parametric equations of the lines
are:

L1: x = 3t
y = 2 + t
z = 1 + t

and L2: x = 1 + 2s
y = −3 − s
z = s

If the lines intersect, then:
3t = 1 + 2s ➀
2 + t = −3 − s ➁
1 + t = s ➂

Substitute the expression for s from ➂ into ➀ :
3t = 1 + 2(1 + t)
t = 3

Substitute the expression for s from ➂ into ➁ :

2 + t = −3 − (1 + t)
t = −3

Since these values of t are not the same, the equations ➀ , ➁ , and ➂ are
inconsistent. Hence, the lines L1 and L2 do not intersect.

Therefore, L1 and L2 are skew lines.

b) The diagram below shows the lines L1 and L2 seen with L1 coming
directly out of the page towards the viewer and appearing as a point. 
Since the lines are skew, L2 appears as a line that does not pass through
this point. Any plane containing L1 will be seen from the edge, and
appears as a line on the page. One of these planes, π1, is parallel to L2.
There is a parallel plane, π2, that contains L2 and also appears as a line 
on the page.

L1

L2

⇀n

π1

π2
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Since the planes π1 and π2 are parallel, they have the same normal vector,
−⇀n . This vector is perpendicular to both L1 and L2. Therefore, −⇀n is the 

cross product of their direction vectors, −⇀m1 = [3, 1, 1] and 
−⇀m2 = [2, −1, 1] . Determine this cross product.

The components of −⇀n are:
(1)(1) − (−1)(1) = 2
(1)(2) − (1)(3) = −1
(3)(−1) − (2)(1) = −5

Therefore, −⇀n = [2, −1, −5] is the normal vector of both planes π1

and π2.

The equation of plane π1 has the form:
2x − y − 5z + D = 0 ➃

Since L1 lies on this plane, any point on L1 also lies on this plane. From
the symmetric equations, the point (0, 2, 1) lies on this line and also on
the plane π1. Substitute these coordinates into equation ➃ to obtain:

2(0) − 2 − 5(1) + D = 0
D = 7

The equation of plane π1 is 2x − y − 5z + 7 = 0.

The equation of plane π2 has the same form. From the symmetric
equations of L2, the point (1, –3, 0) lies on this line and also on 
the plane π2. Substitute these coordinates into equation ➃ to obtain:

2(1) − (−3) − 5(0) + D = 0
D = −5

The equation of plane π2 is 2x − y − 5z − 5 = 0.

Therefore, the equations of the parallel planes containing the lines L1 and
L2 are 2x − y − 5z + 7 = 0 and 2x − y − 5z − 5 = 0.

• How could we check the result in Example 2?

Something to Think About

1

−1

1

1

3

2

1

−1



1. Visualize two skew lines containing the edges of the walls of your
classroom. Then identify two parallel planes, one containing each line.

2. Explain why two skew lines may lie in parallel planes. Is it possible for
skew lines to lie in non-parallel planes? Explain.

3. Knowledge/Understanding Consider the plane x − 3y − 2z + 2 = 0 and
three lines with the symmetric equations given below.

L1: x − 4
5

= y
3

= z + 2
−2

L2: x − 5
1

= y + 1
−2

= z − 4
3

L3: x − 2
2

= y − 2
−4

= z + 1
7

a) Only one of the lines intersects the plane in one point. Which line is this?
Explain.

b) One of the other two lines lies on the plane. Which line is this? Explain.

c) How is the remaining line related to the plane? Explain.

4. Find the equation of the plane passing through A(2, 1, –1), that is
perpendicular to each line.

a) x − 5
1

= y
3

= z − 1
−1

b) x − 2
3

= y + 1
−1

, z = 0

5. Find the equation of the plane containing the point A(5, –3, 6) that is 

parallel to the lines x − 3
1

= y − 3
2

= z + 2
−3

and x − 8
2

= y − 9
1

, z = 2.

6. The equations of a line and plane are given. Determine, if possible, the
point(s) of intersection of each line and plane. For the lines that intersect the
plane in one point, determine the coordinates of the point of intersection.

a) x + 1
−4

= y − 2
3

= z − 1
−2

and x + 2y − 3z + 10 = 0

b) x + 3
4

= y − 1
1

= z − 5
−2

and x + 2y + 3z − 5 = 0

c) x − 4
2

= y
1

= z + 1
−1

and 3x − 2y + 4z − 8 = 0

d) x − 3
4

= y − 2
3

= z + 1
−1

and 4x − z + 5 = 0

e) x
1

= y − 3
7

= z − 1
4

and x − 3y + 5z + 4 = 0

f) x = 2, y
1

= z − 5
2

and 3x − 4y + 2z + 16 = 0

g) x − 4
1

= y − 1
2

= z − 5
3

and 5x + 3y + 4z − 20 = 0

B

A

Exercises3.4
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7. Show that the two lines whose symmetric equations are given below form 
a plane.

L1: x + 5
3

= y − 2
2

= z + 7
6

and L2: x
1

= y + 6
−5

= z + 3
−1

8. Find the point of intersection of the line and the plane.

L: x = 4 + k
y = 2 − 2k
z = 6 + 3k

and π: x = −1 − s + 2t
y = 1 − s + 4t
z = 2 + 3s + t

9. Thinking/Inquiry/Problem Solving The plane with scalar equation
2x − y + 3z − 12 = 0 is given. Determine parametric equations of three
different lines that lie on this plane in each case.

a) The lines must all pass through the same point.

b) The lines must all be parallel.

10. Communication Suppose a line intersects a plane at one point. Define
what is meant by the “angle of intersection of the line and the plane”.
Describe a method you can use to determine the angle of intersection of a
line and a plane. Then use your method to calculate the angle of intersection
of the given line and plane.

a) x
2

= y − 1
1

= z + 1
−1

and x + 2y + 3z − 4 = 0

b) x − 2
−1

= y + 1
3

= z − 5
2

and x − 3y − 2z − 23 = 0

11. Application The projection of a point P on a plane is the point P′
on the plane such that PP′ is perpendicular to the plane. Describe 
a method you can use to determine the projection of a point on a
plane. Then use your method to determine the projections of the
given point on the plane.

a) P(–3, 1, 1) and 2x − y + z − 5 = 0

b) P(2, 0, 3) and x + 3y − z + 7 = 0

12. Prove that the line that passes through the points A(1, 5, 1) and
B(0, 4, 2) lies on the plane 2x + y + 3z − 10 = 0.

13. a) Describe the possible ways a line and a plane can intersect. Illustrate your
descriptions with sketches.

b) Suppose you are given parametric equations of a line and the scalar
equation of a plane in R3. Outline a method you could use to determine
how the line intersects the plane.

x

y

z
P

P′



14. Find the coordinates of the point where the line that passes through
P(1, 2, 3) and Q(−1, 3, −2) intersects the plane 2x + 3y + 2z − 3 = 0.

15. Two lines L1 and L2 have the following symmetric equations.

L1: x
3

= y − 2
1

= z − 1
1

and L2: x − 1
2

= y + 3
−1

= z
1

a) Show that L1 and L2 are skew lines.

b) Determine the equations of two parallel planes that contain L1 and L2.

16. The equations of two parallel planes are given.

π1: 3x − 2y + z − 8 = 0
π2: 3x − 2y + z + 4 = 0

Determine the equations of two skew lines, one on each plane.

17. A line has the following symmetric equations:
x − 1

2
= y + 2

−3
= z + 1

1

a) Write symmetric equations of a line that is skew to this line.

b) Verify that the two lines are skew.

c) Determine the equations of two parallel planes that contain these 
two lines.

18. Show that the lines L1: x − 2
3

= y − 3
5

= z − 1
1

and L2: x − 4
1

= y − 1
7

= z
2

are coplanar. 

19. Refer to Example 2. The distance between the skew lines L1 and L2 is
defined to be the length of the shortest segment AB, where A is a point 
on L1 and B is a point on L2. Calculate the distance between these two 
skew lines.

20. Determine the distance from the given point to the given plane.

a) A(2, 3, –1) and 2x + y − 2z + 9 = 0

b) B(0, –2, 1) and 3x − y + z − 2 = 0

c) P(x1, y1, z1) and Ax + By + Cz + D = 0

C
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Two distinct planes may be either parallel or intersecting. It is easy to
distinguish these two cases because parallel planes have collinear normal
vectors. For example, the following planes are parallel because their normal
vectors, [3, –1, 4] and [6, –2, 8] respectively, are collinear.

3x − y + 4z − 7 = 0
6x − 2y + 8z − 9 = 0

The following planes are not parallel, and intersect in a line.

3x − y + 4z − 7 = 0
x + y − 2z + 5 = 0

These two equations, taken together, can be regarded as equations of the line.
However, they are not very useful in this form because they do not contain
specific information about the line such as a direction vector or the coordinates
of a point on the line.

The following example shows how to determine parametric and scalar
equations of the line of intersection of two planes.

Find parametric and symmetric equations of the line of intersection of the
planes 3x − y + 4z − 7 = 0 and x + y − 2z + 5 = 0.

Example 1

Problems Involving Two Planes3.5
Solution

Consider the system of equations:

3x − y + 4z − 7 = 0 ➀
x + y − 2z + 5 = 0 ➁

To find the parametric equations of the line of intersection, first eliminate y
and express z in terms of x. Then eliminate z and express y in terms of x.

Eliminate y from ➀ and ➁ by adding them:
4x + 2z − 2 = 0
2x + z − 1 = 0

z = 1 − 2xSolve for z: ➂

Eliminate z from ➀ and ➁ by multiplying ➁ by 2 and adding ➀ :
5x + y + 3 = 0

y = −3 − 5xSolve for y: ➃
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Introduce the parameter, t, by letting x = t. Substitute t for x into ➂ and ➃ to
obtain the parametric equations of the line of intersection of the two planes.

x = t
y = −3 − 5t
z = 1 − 2t

Solve each equation for t to obtain:
x
1

= y + 3
−5

= z − 1
−2

These are symmetric equations of the line of intersection of the two planes.

In many problems involving the line of intersection of two planes, it is not
necessary to determine the equation of the line. Sometimes only a direction
vector of the line is needed. The following diagrams show that the direction
vector of the line is perpendicular to the normal vector of each plane. The
diagram below right shows the planes seen from the edge, with the line of
intersection coming directly out of the page towards the viewer and appearing
as a point. On this diagram, the direction vector −⇀m comes out of the page at
right angles to the normal vectors of the two planes, −⇀n1 and −⇀n2 .

The cross product of the normal vectors of the two planes is a direction vector
of their line of intersection.

⇀m

⇀n2

π2

π1π1

π2

⇀n1

• What other ways are there to solve Example 1 ?

Something to Think About
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Find the equation of the plane that passes through the point A(3, –1, 2) and is
perpendicular to the line of intersection of the planes x + y + 3z − 12 = 0
and 7x − y + 3z − 2 = 0.

Solution

The normal vectors of the two planes are −⇀n1 = [1, 1, 3] and −⇀n2 = [7, −1, 3] .
Determine their cross product:

The components of −⇀n1 × −⇀n2 are:

(1)(3) − (−1)(3) = 6
(3)(7) − (3)(1) = 18
(1)(−1) − (7)(1) = −8

The direction vector of the line of intersection of the planes is [6, 18, –8].
Since any scalar multiple of this vector is also a direction vector of the line,
use [3, 9, –4]. This vector is also a normal vector of the required plane.

Let the equation of the plane be 3x + 9y − 4z + D = 0 . Since the point 
A(3, –1, 2) lies on the plane, its coordinates satisfy the equation. Hence,

3(3) + 9(−1) − 4(2) + D = 0
D = 8

The equation of the plane is 3x + 9y − 4z + 8 = 0.

Linear combinations of equations of planes
Infinitely many planes pass through a given line in space. In problems involving
a plane passing through the line of intersection of two planes, the following
approach is very effective.

• Suppose we had used the vector [6, 18, –8] instead of [3, 9, –4]. What
value of D would we have obtained?

Something to Think About

1

−1

3

3

1

7

1

−1

Example 2



Consider the planes π1 and π2 with these equations.

π1: 3x − y + z − 2 = 0 ➀
π2: x + 2y − 4z + 1 = 0 ➁

We can tell by inspection that the normal vectors of π1 and π2 are not collinear.
Hence, these two planes have a line of intersection. Suppose we combine their
equations as follows.

Multiply ➀ by s: s(3x − y + z − 2) = 0
Multiply ➁ by t: t(x + 2y − 4z + 1) = 0

Add to obtain:

π3: s(3x − y + z − 2) + t(x + 2y − 4z + 1) = 0 ➂

Equation ➂ is a linear combination of equations ➀ and ➁ . Assuming that
s ≠ 0, we can divide both sides of ➂ by s to obtain:

π3: 3x − y + z − 2 + t
s

(x + 2y − 4z + 1) = 0

Since t and s are both real numbers, their quotient is also a real number. Hence,

we can replace t
s

with a single symbol, k. Then the equation becomes:

π3: 3x − y + z − 2 + k(x + 2y − 4z + 1) = 0 ➃

Equation ➃ is just another way of writing equation ➂ . This equation is
significant because any point on the line of intersection of planes π1 and π2 also
lies on π3. We can tell this because any point on both π1 and π2 has coordinates
that satisfy ➀ and ➁ , and so these coordinates also satisfy both ➂ and ➃ . We
can also tell that equation ➃ represents a plane because it can be written as:

(3 + k)x + (−1 + 2k)y + (1 − 4k)z + (−2 + k) = 0 ,

which has the form Ax + By + Cz + D = 0.

We can use linear combinations to solve problems involving planes that
intersect in a line without having to find specific information about the line
itself.

Linear Combinations of Equations of Planes
Suppose A1x + B1y + C1z + D1 = 0 and A2x + B2y + C2z + D2 = 0
represent any two planes that intersect in a line. Then the following
equation represents another plane that contains this line, where k is 
any real number.

A1x + B1y + C1z + D1 + k(A2x + B2y + C2z + D2) = 0

Take Note
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Find the equation of the plane passing through the line of intersection of the
planes 3x − y + z − 2 = 0 and x + 2y − 4z + 1 = 0, and that satisfies the
given condition.

a) The plane passes through the point A(3, 1, 3).

b) The plane is also parallel to the plane 5x + 3y − 7z − 6 = 0.

Solution

a) Let the equation of the required plane be as follows, where the number k
is to be determined.
3x − y + z − 2 + k(x + 2y − 4z + 1) = 0 ➀

Since this plane passes through the point A(3, 1, 3), its coordinates satisfy
the equation. Substitute x = 3, y = 1, and z = 3 in ➀ .

3(3) − 1 + 3 − 2 + k(3 + 2 − 12 + 1) = 0
9 − 6k = 0

k = 3
2

Substitute k = 3
2

in ➀ to obtain:

3x − y + z − 2 + 3
2

(x + 2y − 4z + 1) = 0

Multiply both sides by 2:
2(3x − y + z − 2) + 3(x + 2y − 4z + 1) = 0

9x + 4y − 10z − 1 = 0

The equation of the plane is 9x + 4y − 10z − 1 = 0.

b) Write equation ➀ in the form Ax + By + Cx + D = 0 .
(3 + k)x + (−1 + 2k)y + (1 − 4k)z + (−2 + k) = 0 ➁

Since this plane is parallel to the plane 5x + 3y − 7z − 6 = 0, their normal
vectors must be multiples of one another. These normal vectors are
[3 + k, −1 + 2k, 1 − 4k] and [5, 3, –7] respectively.

Hence, 3 + k
5

= −1 + 2k
3

= 1 − 4k
−7

From the first equation: From the second equation:
3 + k

5
= −1 + 2k

3

3(3 + k) = 5(−1 + 2k)
−7k = −14

k = 2

−1 + 2k
3

= 1 − 4k
−7

−7(−1 + 2k) = 3(1 − 4k)
−2k = −4

k = 2

Substitute this value of k in equation ➁ to obtain:
5x + 3y − 7z = 0

The equation of the plane is 5x + 3y − 7z = 0.

Example 3
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We could have solved Example 3 by letting the equation of the required plane
be k(3x − y + z − 2) + x + 2y − 4z + 1 = 0 (see exercise 13).

1. Describe the three different ways in which a line and a plane may be
situated with respect to each other.

2. Refer to Example 1.

a) Repeat the solution, but form parametric equations in a different way.

b) Compare the result of part a with the result in Example 1. Explain the
similarities and the differences in the two symmetric equations.

3. Refer to Example 1. Here is another way to solve this example.

a) Verify that the cross product of the normal vectors of the two planes is a
direction vector of their line of intersection.

b) The direction vector in part a occurs in the symmetric equations of the
line. To determine these equations we require the coordinates of a point
on the line. How could we determine these coordinates?

4. Communication If two planes intersect in a line, explain why the cross
product of the normal vectors of the planes is collinear with the direction
vector of the line.

5. Knowledge/Understanding Find parametric and symmetric equations of
the line of intersection of the two planes.

a) x − 2y + 3z − 6 = 0 and 2x + y + z − 7 = 0

b) 2x + y + z − 5 = 0 and 3x + 2y + 2z − 8 = 0

c) 22x + y + 8z − 20 = 0 and 11x + 2y + 5z − 18 = 0

6. Find symmetric equations of the line that passes through the point A(7, –2, 4) 
and that is parallel to the line of intersection of the planes 4x − 3y − z − 1 = 0
and 2x + 4y + z − 5 = 0.

B

A

Exercises3.5

• How could we check the results in Example 3?

Something to Think About
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7. Find the equation of the plane that passes through the point A(3, –1, 2) and
that is perpendicular to the line of intersection of the planes 3x − y + 5 = 0
and 4x + 3z − 7 = 0.

8. Determine a vector equation of the line of intersection of the planes
π1: 3x − y + 4z − 2 = 0 and π2: x + 6y + 10z + 8 = 0 .

9. Application Write the equations of three different planes that contain the
line of intersection of π1: 2x + 3y − z + 4 = 0 and π2: x + 3z − 5 = 0.

10. Find the equation of the plane that passes through the line of intersection of
the planes 2x − 3y − z + 1 = 0 and 3x + 5y − 4z + 2 = 0, and that also
passes through the point (3, –1, 2).

11. Find the equation of the plane that passes through the line of intersection of
the planes 3x − 2y + 4z − 3 = 0 and 2x + 3z − 5 = 0, and that is parallel to
the plane 3x + 2y + 5z − 4 = 0.

12. Find the equation of the plane that passes through the line of intersection of 
the planes 4x − 2y + z − 3 = 0 and 2x − y + 3z + 1 = 0, and that is
perpendicular to the plane 3x + y − z + 7 = 0.

13. Refer to Example 3.

a) Solve part a of this example by letting the equation of the plane be
k(3x − y + z − 2) + x + 2y − 4z + 1 = 0.

b) Compare the two values of k obtained in the two solutions. Describe how
they are related. Explain.

14. Find the equation of the plane(s) that passes through the line of intersection
of the planes x − y + 2z + 5 = 0 and 2x + 3y − z − 1 = 0, and that satisfy 
each condition.

a) It passes through the origin.

b) It passes through C(1, –1, 4).

c) It is parallel to the z-axis.

d) It is perpendicular to the plane x + 2y − 2z = 0.

e) It is parallel to the line segment with endpoints A(1, 1, –1) and B(3, 5, –3).

f) It has equal y- and z-intercepts.

15. a) Explain why the planes x + 2y − 3z + 4 = 0 and 2x + 4y − 6z + 5 = 0
are parallel.

b) What does the following equation represent? Explain.
x + 2y − 3z + 4 + k(2x + 4y − 6z + 5) = 0
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16. Thinking/Inquiry/Problem Solving Two planes, π1 and π2, intersect in the 

line with symmetric equations x − 1
2

= y − 2
3

= z + 4
1

. Plane π1 contains the 

point A(2, 1, 1) and plane π2 contains the point B(1, 2, –1). Find the scalar
equations of planes π1 and π2.

17. Two planes, π1 and π2, intersect in the line with vector equation
[x, y, z] = [3, 5, 4] + s[2, 3, 1] . Point A(0, 0, 0) lies on plane π1 and point 
B(1, 1, 1) lies on plane π2. Determine the scalar equations of planes π1

and π2.

18. The diagram below shows a cube with vertices (±2, ±2, ±2) containing an
inscribed tetrahedron. Suppose the cube is cut along the plane determined by
vertices A, B, and C. Determine parametric equations of the lines where this
plane intersects the faces of the cube.

19. There is only one plane that passes through the line of intersection of the 
planes A1x + B1y + C1z + D1 = 0 and A2x + B2y + C2z + D2 = 0 that is not
represented by the equation:
A1x + B1y + C1z + D1 + k(A2x + B2y + C2z + D2) = 0
Which plane is this? Explain.

z

C

A

B
y

x

C
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There are several intersection possibilities for three planes. We will assume the
planes are distinct, unless stated otherwise. The key to identifying the way three
planes intersect is to examine their normal vectors.

In the following examples, we will represent planes by π1, π2, π3, …, their 

normal vectors by −⇀n1 , −⇀n2 , −⇀n3 , …, and their equations by ➀ , ➁ , ➂ , …,
respectively.

Case 1: Three parallel planes
The three planes are all parallel to one another. The diagram below right shows
a side view of the planes, which appear as parallel lines on the page. The planes
come out of the page towards the viewer. The normal vectors are perpendicular
to the planes, and lie flat on the page. Notice that the normal vectors are
collinear, and also coplanar.

The equations below represent this situation. We can tell this because all three
normal vectors [2, –1, 3], [4, –2, 6], and [6, –3, 9] are collinear. That is,

π3

π2

π1

π3

π2

π1

⇀n1 ⇀n2 ⇀n3
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−⇀n2 = 2−⇀n1 and −⇀n3 = 3−⇀n1 . The planes are distinct because their equations do not
satisfy these relationships. That is, equation ➁ is not equal to 2 times
equation ➀ , and equation ➂ is not equal to 3 times equation ➀ .

π1: 2x − y + 3z − 2 = 0 ➀
π2: 4x − 2y + 6z − 3 = 0 ➁
π3: 6x − 3y + 9z − 4 = 0 ➂

We will now modify the diagram and the equations to represent other
intersection possibilities for three planes.

• What constant terms in equations ➁ and ➂ would make these equations
represent the same plane as equation ➀ ?

Something to Think About
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Case 2: Two parallel planes
Suppose we replace plane π3 with another plane, π4, that is not parallel to the
other two planes. Then π4 intersects π1 and π2 forming two parallel lines. The
side view shows the planes π1 and π2 as two parallel lines with a third line, π4,
intersecting them. The normal vectors lie flat on the page and are coplanar.

The equations below represent this situation. We can tell this because the
normal vectors [2, –1, 3] and [4, –2, 6] are collinear but are not collinear with 
the third normal vector [1, –3, 2]. That is, −⇀n2 = 2−⇀n1 is the only relationship
involving the normal vectors or the equations.

π1: 2x − y + 3z − 2 = 0 ➀
π2: 4x − 2y + 6z − 3 = 0 ➁
π4: x − 3y + 2z + 10 = 0 ➃

The above system of equations is inconsistent.

Case 3: Planes intersecting in pairs
Suppose we replace plane π2 with another plane, π5, that is not parallel to either
of the other two planes. The planes π1, π5, and π4 intersect in pairs, forming
three parallel lines. The side view shows the planes as lines forming a triangle.
Again, the normal vectors lie flat on the page and are coplanar.

The equations at the top of the following page represent this situation. We can
tell this by showing that one of the normal vectors is a linear combination of the
other two normal vectors, but the equations are not linear combinations of each
other.

π5 π5

π4

π4

π1 π1

⇀n1

⇀n4

⇀n5

π4 π4

π2

π1

π2

π1

⇀n4

⇀n2
⇀n1
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π1: 2x − y + 3z − 2 = 0 ➀
π4: x − 3y + 2z + 10 = 0 ➃
π5: 5x − 5y + 8z + 3 = 0 ➄

The normal vector of π5, [5, –5, 8], is a linear combination of the other two 

normal vectors: −⇀n5 = 2−⇀n1 + −⇀n4 . The planes do not intersect in a single line 
because the equations do not satisfy the same relationship. That is, equation ➄
is not equal to 2 times equation ➀ plus ➃ . The system of equations is inconsistent.

In Cases 1, 2, and 3, each system of equations has no solution because there is
no point on all three planes. It is impossible for the coordinates of a point to
satisfy all three equations. We say that each system of equations is inconsistent.

Case 4: Planes intersecting in a line
Suppose we replace plane π5 with another plane, π6, that contains the line of
intersection of π1 and π4. Then, there is a line of intersection for all three
planes. The side view shows the planes as lines intersecting at a point (which is
the line of intersection coming out of the page towards the viewer). Again, the
normal vectors lie flat on the page and are coplanar.

The equations below represent this situation. We can tell this by showing that
one of the normal vectors is a linear combination of the other two normal
vectors, and the corresponding equation is the same linear combination of the
other two equations.

π1: 2x − y + 3z − 2 = 0 ➀
π4: x − 3y + 2z + 10 = 0 ➃
π6: 5x − 5y + 8z + 6 = 0 ➅

The normal vector of π6, [5, –5, 8], is a linear combination of the other two 

normal vectors: −⇀n6 = 2−⇀n1 + −⇀n4 . The planes intersect in a single line because
the equations satisfy the same relationship. That is, equation ➅ is 2 times
equation ➀ plus equation ➃ .

The above system of equations has infinitely many solutions because the points
on the line of intersection are on all three planes. The coordinates of any point
on this line satisfy all three equations. We can determine the equation of the
line of solutions using the methods in Section 3.5.

π6
π6π4 π4

π1

π1

⇀n1

⇀n4

⇀n6
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As long as the planes are distinct, there is only one other intersection possibility
for three planes. This is the only one in which the normal vectors are not
coplanar.

Case 5: Planes intersecting at a point
Suppose we replace plane π6 with another plane, π7, so that the planes intersect
in a single point. Since a side view showing all three planes as lines cannot be
drawn, the normal vectors are not coplanar.

The equations below represent this situation. We can tell this by showing that it
is not possible to express one of the normal vectors as a linear combination of
the other two.

π1: 2x − y + 3z − 2 = 0 ➀
π4: x − 3y + 2z + 10 = 0 ➃
π7: 3x + y − z − 4 = 0 ➆

The normal vectors are −⇀n1 = [2, −1, 3] , −⇀n4 = [1, −3, 2] , and −⇀n7 = [3, 1, −1] . To
show that these vectors are not coplanar, we use the test for coplanar vectors from
Section 2.5.

Calculate the cross product of any two of the vectors, say −⇀n4 × −⇀n7 .

The components of −⇀n4 × −⇀n7 are:

(−3)(−1) − (1)(2) = 1
(2)(3) − (−1)(1) = 7
(1)(1) − (3)(−3) = 10

Therefore, −⇀n4 × −⇀n7 = [1, 7, 10].

Now calculate −⇀n1 • −⇀n4 × −⇀n7 .
−⇀n1 • −⇀n4 × −⇀n7 = [2, −1, 3] • [1, 7, 10]

= 2 − 7 + 30
= 25

Since the result is not 0, the three normal vectors are not coplanar.

−3

1

2

−1

1

3

−3

1

π7

π4

π1

⇀n1
⇀n7

⇀n4
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Since the normal vectors are not coplanar, the planes intersect in a single point.
Therefore the system of equations has only one solution because there is only
one point on all three planes. This is the only point whose coordinates satisfy
all three equations. You will determine the solution in exercise 7.

In Cases 4 and 5, each system of equations has solution(s) because there are
point(s) on all three planes. The coordinates of these point(s) satisfy all three
equations. We say that each system of equations is consistent.

The equations of three planes are given.

π1: 3x − 3y − 2z − 14 = 0
π2: 5x + y − 6z − 10 = 0
π3: x − 2y + 4z − 9 = 0

a) Show that the three planes intersect at a single point.

b) Find the coordinates of the point of intersection.

Solution

a) Choose any two planes and find the cross product of their normal vectors.
Choose π1 and π2. Determine −⇀n1 × −⇀n2 , where −⇀n1 = [3, −3, −2] and−⇀n2 = [5, 1, −6] .

Example 1

Intersections of Three Planes
Suppose three distinct planes have normal vectors −⇀n1 , −⇀n2 , and −⇀n3 . To
determine if there is a unique point of intersection, calculate−⇀n1 • −⇀n2 × −⇀n3 .

• If −⇀n1 • −⇀n2 × −⇀n3 ≠ 0 , the normal vectors are not coplanar. There is a
single point of intersection.

• If −⇀n1 • −⇀n2 × −⇀n3 = 0 , the normal vectors are coplanar. There may or
may not be points of intersection. If there are any points of intersection,
then it is a line.

Instead of −⇀n1 • −⇀n2 × −⇀n3 , we can use −⇀n2 • −⇀n1 × −⇀n3 or −⇀n3 • −⇀n1 × −⇀n2 .

Take Note

• Notice that we can tell that there is a unique solution without solving
the system.

Something to Think About
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The components of −⇀n1 × −⇀n2 are:

(−3)(−6) − (1)(−2) = 20
(−2)(5) − (−6)(3) = 8
(3)(1) − (5)(−3) = 18

The vector −⇀n1 × −⇀n2 = [20, 8, 18] is perpendicular to π1 and π2.

Determine −⇀n3 • −⇀n1 × −⇀n2 .
−⇀n3 • −⇀n1 × −⇀n2 = [1, −2, 4] • [20, 8, 18]

= 76

Since −⇀n3 • −⇀n1 × −⇀n2 ≠ 0 , the normal vectors of the planes are not
coplanar. Therefore, the three planes intersect at a single point.

b) Solve the system:

3x − 3y − 2z − 14 = 0 ➀
5x + y − 6z − 10 = 0 ➁
x − 2y + 4z − 9 = 0 ➂

Recall from Section 3.5 that when two planes intersect in a line, any linear
combination of their equations contains this line. Hence, forming linear
combinations of the given equations does not change the solution of the
system. Form linear combinations in two different ways to eliminate the
same variable, say, y.

Copy ➀ 3x − 3y − 2z − 14 = 0
15x + 3y − 18z − 30 = 0
18x − 20z − 44 = 0
9x − 10z − 22 = 0

➁ × 2 10x + 2y − 12z − 20 = 0
x − 2y + 4z − 9 = 0

11x − 8z − 29 = 0
➁ × 3 Copy ➂

Add. Add.
or

The given system has been reduced to this system in two variables.
9x − 10z − 22 = 0 ➃

11x − 8z − 29 = 0 ➄

➃ × 4 36x − 40z − 88 = 0
55x − 40z − 145 = 0

−19x + 57 = 0
x = 3

➄ × 5
Subtract.

Substitute x = 3 in equation ➃ .
27 − 10z − 22 = 0

z = 1
2

−3

1

−2

−6

3

5

−3

1
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Substitute x = 3 and z = 1
2

in equation ➁ .

15 + y − 3 − 10 = 0
y = −2

The solution of this linear system is (3, –2, 1
2

). These are the coordinates 

of the point of intersection of the three planes.

The equations of three planes are given.

π1: x + 2y + 3z + 4 = 0
π2: x − y − 3z − 8 = 0
π3: x + 5y + 9z + 16 = 0

a) Show that the three planes do not intersect at a single point.

b) Show that the three planes intersect along a line.

Solution

a) Choose any two planes and find the cross product of their normal vectors.

Choose π1 and π3. Determine −⇀n1 × −⇀n3 , where −⇀n1 = [1, 2, 3]

and −⇀n3 = [1, 5, 9] .

The components of −⇀n1 × −⇀n3 are:

(2)(9) − (5)(3) = 3
(3)(1) − (9)(1) = −6
(1)(5) − (1)(2) = 3

The vector −⇀n1 × −⇀n3 = [3, −6, 3] is perpendicular to π1 and π3.

Determine −⇀n2 • −⇀n1 × −⇀n3 .
−⇀n2 • −⇀n1 × −⇀n3 = [1, −1, −3] • [3, −6, 3]

= 0

Since −⇀n2 • −⇀n1 × −⇀n3 = 0 , the normal vectors of the planes are coplanar.
Hence, the planes do not intersect at a single point.

b) Attempt to solve the system:

x + 2y + 3z + 4 = 0 ➀
x − y − 3z − 8 = 0 ➁
x + 5y + 9z + 16 = 0 ➂

Eliminate x by subtracting ➁ from ➀ and also by subtracting ➂ from ➀ .
The result will be two equations in y and z.

2

5

3

9

1

1

2

5

Example 2
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➀ − ➁ 3y + 6z + 12 = 0 ➀ − ➂ −3y − 6z − 12 = 0
or y + 2z + 4 = 0 or y + 2z + 4 = 0

The given system has been reduced to this system in two variables,
consisting of two identical equations.

y + 2z + 4 = 0 ➃
y + 2z + 4 = 0 ➄

The solution of this system consists of all the values of y and z that satisfy
the equation y + 2z + 4 = 0. To determine these values, let z = t and solve
for y to obtain y = −4 − 2t . To determine values of x, substitute these
expressions into any of the given equations, say ➀ .

x + 2y + 3z + 4 = 0
x + 2(−4 − 2t) + 3t + 4 = 0

x = 4 + t

Hence, the solution of the system, where t is any real number, is:
x = 4 + t
y = −4 − 2t
z = t

Since these equations are parametric equations of a line, the planes
intersect along this line.

1. Refer to Case 3 on page 172.

a) Verify that −⇀n5 = 2−⇀n1 + −⇀n4 .

b) Verify that ➄ ≠ 2 × ➀ + ➃ .

2. Refer to Case 4 on page 173.

a) Verify that −⇀n6 = 2−⇀n1 + −⇀n4 .

b) Verify that ➅ = 2 × ➀ + ➃ .

A

Exercises3.6

• How could we check the solution of Example 2?

Something to Think About
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3. Refer to Example 1.

a) In the solution of part b, after the first addition, we divided each side of
the equation 18x − 20z − 44 = 0 by 2 to obtain 9x − 10z − 22 = 0. Is this
necessary? Explain.

b) Describe a different way to solve part b.

4. Refer to Example 2. Describe a different way to solve part b.

5. The equations of two intersecting planes are given.

x + y + z + 5 = 0
x + 2y + 3z + 4 = 0

Write a third equation such that the three equations represent:

a) three planes intersecting in a line.

b) three planes intersecting in pairs.

c) two parallel planes intersected by a third plane.

d) three planes intersecting at a point.

6. Give an example of a system of equations that has no solution. Explain, both
algebraically and geometrically.

7. Solve the system of equations in Case 5 on page 174.

8. Solve each linear system.

a) 2x + y − z = 1 b) x + 4y + 3z − 5 = 0
x + 3y + z = 10 x + 3y + 2z − 4 = 0
x + 2y − 2z = −1 x + y − z + 1 = 0

c) 3x + 2y − z = 6 d) 5x + 2y − z = 13
x + y + z = 5 x − y − z = 0
2x − 3y + 2z = −10 2x + y + 3z = −1

e) 3x + y + 2z = 5 f) x + y + 2z = −8
2x − y + z = −1 3x − y − z = 0
4x + 2y − z = −3 2x + 2y − z = −2

9. In Example 1, we found the coordinates of the point of intersection of the
three planes by forming linear combinations of their equations.

a) Solve this system using the following method. Choose any two of the
planes and determine parametric equations of their line of intersection.
Then determine the coordinates of the point where this line intersects the
third plane.

b) Compare your solution from part a with the one on pages 176 and 177.
Describe the similarities and the differences in the two solutions.

B



10. In Case 4 on page 173, we showed that the three planes intersect along a
line. Find parametric equations of this line.

11. Point P lies on three distinct planes with normal vectors −⇀n1 , −⇀n2 and −⇀n3 .

a) If −⇀n1 • −⇀n2 × −⇀n3 ≠ 0 , explain why the planes intersect at P.

b) If −⇀n1 • −⇀n2 × −⇀n3 = 0 , explain why the planes intersect in a line passing
through P.

12. Communication Suppose you are given three equations forming a linear
system. Explain how you could determine whether the system is consistent
or inconsistent. Illustrate your explanation with some examples.

13. In each linear system, show that one of the equations is a linear combination
of the other two equations. Then express the solution of the system in
parametric form.

a) x + 2y + 3z − 2 = 0 b) 2x − y + z + 4 = 0
x + y + z + 5 = 0 5x + y − z − 10 = 0
2x + 3y + 4z + 3 = 0 9x − y + z − 2 = 0

14. Express the solution of each linear system in parametric form.

a) x + 3y + 2z = 1 b) 4x − y + 5z + 2 = 0
2x + y − z = 4 2x + y + 7z + 3 = 0

15. Knowledge/Understanding Describe how the planes in each linear system 
are related. If there is a unique point of intersection, find its coordinates. If 
there is a line of intersection, express the solution in parametric form.

a) 3x + 2y − z − 4 = 0 b) x + 2y − 3z = 11
x + 3y + z = 5 2x + y = 7
4x + 5y = 8 3x + 6y − 8z = 22

c) x + 2y − z + 3 = 0 d) 5x + 2y − 5z = 4
2x + y + 3z − 8 = 0 2x + 3y − 4z = 2
2x + 4y − 2z − 5 = 0 x + y + z = 3

e) x + 3y + 3z − 8 = 0
x − y + 3z − 4 = 0

16. In Example 2, we found parametric equations of the line of intersection of
the three planes by forming linear combinations of their equations.

a) Solve this system using the following method. Choose any two of the
planes and determine parametric equations of their line of intersection.
Then show that the third plane contains this line.

b) Compare your solution from part a with the one on pages 177 and 178.
Describe the similarities and the differences in the two solutions.
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17. Thinking/Inquiry/Problem Solving If the three planes with the equations
below have a line in common, show that ab + bc + ac = 2abc + 1.

π1: x + by + cz = 0
π2: ax + y + cz = 0
π3: ax + by + z = 0

18. Application A parabola has an equation of the form y = ax2 + bx + c .
Determine its equation if it passes through the points A(1, 0), B(4, 3), and
C(6, –5).

19. Given π1: 3x − 4y + z − 35 = 0 and π2: ax + by − 5z + 23 = 0, find the
relationship between a and b that will make π1 and π2 intersect in the line 
x − 1

3
= y + 5

4
= z − 12

7
.

20. Consider the linear system:

x + y + z = 6
2x − y + 2z = 6
3x + 2y + z = 10

The coefficients of the variables, and the constant terms, form sets of three
numbers. These numbers can be considered to be components of vectors. 

That is, we can define −⇀a = [1, 2, 3] ,
−⇀
b = [1, −1, 2] , −⇀c = [1, 2, 1]

and 
−⇀
d = [6, 6, 10].

a) Explain why we can represent the system by the vector equation 
−⇀a x +

−⇀
b y + −⇀c z =

−⇀
d .

b) By taking appropriate cross products and dot products of both sides of the
equation, show that the solution of the system is:

x =
−⇀
d •

−⇀
b × −⇀c

−⇀a •
−⇀
b × −⇀c

, y =
−⇀a •

−⇀
d × −⇀c

−⇀a •
−⇀
b × −⇀c

, z =
−⇀a •

−⇀
b ×

−⇀
d

−⇀a •
−⇀
b × −⇀c

21. Given the linear system below, express x, y and z as linear combinations of
a, b, and c.

x + 2y − z = a
x − y + 2z = b
3x + 3y + z = c

C
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We often encounter systems of equations in which the context is not lines and
planes. Economists often have to work with systems of dozens of equations
involving dozens of unknowns. Relying on a geometric interpretation would not
be very useful.

To help organize such vast amounts of data, mathematicians have created a
powerful tool called a matrix. A matrix is simply numerical data arranged in a
rectangular array. We usually enclose the array in square brackets.

The method of solving a linear system developed in Section 3.6 amounts to
combining linear combinations of the equations in certain ways. Since several
similar steps are involved, this method is ideally suited for technology. Solving
a linear system using technology requires a systematic approach because a
calculator or computer uses the same method every time.

Beginning in this section, we will write all equations of planes with the constant
terms on the right side. 

For example, consider the linear system below. The data are repeated at the
right without the variables, and without the + and = signs.

We will solve the system by forming linear combinations of the equations in a

2x  +    4y   +    z     =      2 2 4 1 2
5 5 3         17
4   1 3         26

5x  +    5y   +  3z     =    17
4x  −      y   +  3z     =    26 −

Solving Linear Systems Using Matrices3.7
systematic way.

Step 1: Eliminate x from the second and third equations.

Copy the first equation.
Multiply the first equation by 5 and the second equation by 2, and 
subtract. Replace the second equation with the result.
Multiply the first equation by 2 and subtract the third equation. Replace 
the third equation with the result.

2 4 1 22x  +    4y   +   z     =      2
0         10         −1       −24
0   9         −1       −22

0x  +  10y   −   z     =  −24
0x  +    9y   −   z     =  −22
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Step 2: Eliminate y from the third equation.

Copy the first two equations.
Multiply the second equation by 9 and the third equation by 10, and 
subtract. Replace the third equation with the result.

Step 3: Eliminate z from the first and second equations.

Copy the third equation, keeping it in the same position. Add the 
second and third equations. Replace the second equation with the result.
Subtract the third equation from the first equation. Replace the first 
equation with the result.

Step 4: Eliminate y from the first equation.

Copy the second and third equations, keeping them in the same 
positions. Multiply the first equation by 5 and the second equation by 2,
and subtract. Write the result in the first position.

Step 5: Divide to obtain the solution.

Divide the first equation by the coefficient of x.
Divide the second equation by the coefficient of y.

The solution of the system is x = 3, y = −2, and z = 4.

Study the patterns in this solution. In each step, each highlighted equation is the
same as in the previous step. The other equations are obtained by forming linear
combinations of each remaining equation with the nearest highlighted equation.
The objective is to form two small triangles of zeros as shown in Step 4. A final
step produces three coefficients of 1 along a diagonal line. Then the solution
appears in the final column.

0   0           1            40x  +    0y   + 1z     =      4

1           0           0             31x  +    0y   + 0z     =      3
0           1           0         −20x  +    1y   + 0z     =    −2

0   0           1            40x  +    0y   + 1z     =      4

10   0   0          3010x  +    0y   + 0z     =    30
0         10           0       −200x  +  10y   + 0z     =  −20

2 4 0          −22x  +    4y   + 0z     =    −2
0         10           0       −20
0   0           1            4

0x  +  10y   + 0z     =  −20
0x  +    0y   + 1z     =      4

2 4 1 22x  +    4y   +   z     =      2
0         10         −1       −24
0   0           1           4

0x  +  10y   −   z     =  −24
0x  +    0y   +   z     =      4
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A solution like the one shown on pages 182 and 183 is usually written using
only the arrays of numbers, enclosed in square brackets as shown below. These
arrays are matrices. They contain data about the system of equations and its
solution. Each row corresponds to an equation. The columns correspond to the
coefficients of x, y, and z, and the constant terms. You have to remember what
the various positions represent. The vertical line inside each matrix serves as a
reminder that the equations have the form Ax + By + Cx = D , with the constant
term on the right side. It is not essential to use the vertical line.

 2 4 1 2
5 5 3 17
4 −1 3 26





 2 4 1 2

0 10 −1 −24
0 9 −1 −22





 2 4 1 2

0 10 −1 −24
0 0 1 4





 2 4 0 −2

0 10 0 −20
0 0 1 4





 10 0 0 30

0 10 0 −20
0 0 1 4





 1 0 0 3

0 1 0 −2
0 0 1 4




The first matrix contains the data from the given linear system, and the last one 
contains the solution. Each matrix represents a linear system that is equivalent 
to the original one. This means that it has the same solution. The matrices were 
created by performing certain elementary operations on the rows. These operations 
correspond to the operations we use when we solve a system of equations.
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A system of three linear equations in x, y, and z represents three planes in R3. It 

can be represented by a matrix having the form 


 ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


 , where each * 

represents a real number. When we solve the system using matrices, we attempt
to use the elementary row operations to obtain a matrix having the form 
 1 0 0 ∗

0 1 0 ∗
0 0 1 ∗


 . The method of doing this is called row reduction. The matrix 

that results is called the reduced matrix and is in row reduced echelon form.

A system of two linear equations in x and y represents two lines in R2. It can be 

represented by a matrix having the form 

[ ∗ ∗ ∗
∗ ∗ ∗

]
. To solve the system,

we attempt to use row reduction to obtain a matrix having the form 

[
1 0 ∗
0 1 ∗

]
.

Solve the linear system using row reduction.

4x − 3y = −10
3x + 5y = 7

Solution

Write the system as a matrix.
[

4 −3 −10
3 5 7

]
➀
➁

Copy ➀ .
[

4 −3 −10
0 −29 −58

]
➀

Replace ➁ with 3 × ➀ − 4 × ➁ . ➁

Example 1

Elementary Row Operations
A system of linear equations can be represented by a matrix. To obtain an
equivalent system, perform any of these operations.

• Multiply the numbers in any row by any constant.

• Replace any row by adding the numbers in any other row to the
numbers in that row.

• Replace any row with a linear combination of that row and another row.

Take Note
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Divide ➁ by −29.
[

4 −3 −10
0 1 2

]
➀
➁

Copy ➁ , leaving it where it was.
[

4 0 −4
0 1 2

]
➀

Replace ➀ with ➀ + 3 × ➁ . ➁

Divide ➀ by 4 to obtain the reduced 
[

1 0 −1
0 1 2

]
matrix.

The solution of the system is x = −1 and y = 2.

Solve the linear system using row reduction.

3x − y − 3z = 4
2x − 2y = −3
5x − 2y + 3z = −6

Solution

Write the system as a matrix.

 3 −1 −3 4

2 −2 0 −3
5 −2 3 −6


 ➀

➁
➂

Copy ➀ .

 3 −1 −3 4

0 4 −6 17
0 1 −24 38


 ➀

Replace ➁ with 2 × ➀ − 3 × ➁ . ➁
Replace ➂ with 5 × ➀ − 3 × ➂ . ➂

Copy ➀ .

 3 −1 −3 4

0 4 −6 17
0 0 90 −135


 ➀

Copy ➁ . ➁
Replace ➂ with ➁ − 4 × ➂ . ➂

Divide ➂ by 45.

 3 −1 −3 4

0 4 −6 17
0 0 2 −3


 ➀

➁
➂

Copy ➂ , leaving it where it was.

 6 −2 0 −1

0 4 0 8
0 0 2 −3


 ➀

Replace ➁ with ➁ + 3 × ➂ . ➁
Replace ➀ with 2 × ➀ + 3 × ➂ . ➂

Copy ➂ , leaving it where it was.

 12 0 0 6

0 4 0 8
0 0 2 −3


 ➀

Copy ➁ , leaving it where it was. ➁
Replace ➀ with 2 × ➀ + ➁ . ➂

Example 2
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Divide ➀ by 12.

 1 0 0 1

2
0 1 0 2
0 0 1 −3

2


Divide ➁ by 4.

Divide ➂ by 2.
The result is the reduced matrix.

The solution of the system is x = 1
2

, y = 2, z = −3
2

.

It is not always possible to reduce a matrix of the form 


 ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


 to one 

of the form 


 1 0 0 ∗

0 1 0 ∗
0 0 1 ∗


 using row reduction. If one of the equations is a 

linear combination of the other two, a row of zeros will occur at some point. It 

may be possible to reduce the matrix to a form such as 


 1 0 ∗ ∗

0 1 ∗ ∗
0 0 0 0


. Then 

the system is consistent, and the corresponding planes intersect in a line.
Parametric equations of this line constitute the solution of the system.

Solve the system using row reduction, and interpret the solution geometrically.

2x + 7y + 2z = 3
6x + y − 4z = −1
2x + 9y + 3z = 4

Solution

Write the system as a matrix. 

 2 7 2 3

6 1 −4 −1
2 9 3 4


 ➀

➁
➂

Copy ➀ .

 2 7 2 3

0 20 10 10
0 −2 −1 −1


 ➀

Replace ➁ with 3 × ➀ − ➁ . ➁
Replace ➂ with ➀ − ➂ . ➂

Copy ➀ .

 2 7 2 3

0 2 1 1
0 0 0 0


 ➀

Divide ➁ by 10. ➁
Replace ➂ with ➁ + 10 × ➂ . ➂

Copy ➂ , leaving it where it was.

 4 0 −3 −1

0 2 1 1
0 0 0 0


 ➀

Copy ➁ , leaving it where it was. ➁
Replace ➀ with 2 × ➀ − 7 × ➁ . ➂

Example 3



Divide ➀ by 4.



1 0 −3
4

−1
4

0 1 1
2

1
2

0 0 0 0




➀

Divide ➁ by 2. ➁

Copy ➂ . ➂
The result is the reduced matrix.

The equation corresponding to row ➂ is 0x + 0y + 0z = 0. This equation is
satisfied for all values of the variables. In particular, it is satisfied when z = t .

The equation corresponding to row ➁ is y + 1
2

z = 1
2

.

Substitute z = t to obtain:

y + 1
2

t = 1
2

y = 1
2

− 1
2

t

The equation corresponding to row ➀ is x − 3
4

z = −1
4

.

Substitute z = t to obtain:

x − 3
4

t = −1
4

x = −1
4

+ 3
4

t

The solution of the system is given by these equations, where t is any real
number. These are parametric equations of the line of intersection of the
three planes.

x = −1
4

+ 3
4

t

y = 1
2

− 1
2

t

z = t

1. Solve each linear system using row reduction.

a) 3x + y = 5 b) 2x − y = 2
x + y = 3 x + 3y = 8

c) 5x + 2y = 0 d) x + 3y = 5
3x + y = 5 4x − y = −6

B

Exercises3.7
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2. Solve each linear system using row reduction.

a) 5x − 2y = 7 b) 9x + 4y = −5
3x + 4y = −2 4x − 3y = 8

c) 2x + y = −7 d) 6x − 5y = 9
3x + 4y = 2 2x − 3y = 2

3. When two 2 by 2 systems of equations were solved using row reduction, the
reduced matrices shown below were obtained.

a) Why did zeros appear in the first two positions of the second row of each
matrix?

b) What do these matrices tell you about the solution of the original system?
Explain, both algebraically and geometrically.

Two reduced matrices
Matrix 1 Matrix 2[

2 −3 6
0 0 0

] [
2 −3 6
0 0 8

]

4. Communication Three linear systems are shown below. Results from
solving the systems using row reduction are also shown, but not necessarily
in the same order. For each linear system, identify the corresponding
reduced matrix. Explain.

Three linear systems
a) x + 2y = 3 b) x + 2y = 3 c) x + 2y = 3

2x + 4y = 6 2x + 4y = 5 2x + y = 0

Three reduced matrices
Matrix 1 Matrix 2 Matrix 3[

1 0 −1
0 1 2

] [
1 2 0
0 0 1

] [
1 2 3
0 0 0

]

5. Solve each linear system using row reduction.

a) x + 3y + 4z = 19 b) x + y + z = −4
x + 2y + z = 12 x − y + 2z = −13
x + y + z = 8 2x + y − 3z = 15

c) 4x + 2y − 3z = 7 d) x + y + z = 0
x + 3y + z = 2 16x + 4y + z = 3
x + 4y − 2z = −9 x + y − z = 0



6. Knowledge/Understanding Solve each linear system using row
reduction, if possible. If it is not possible, explain why.

a) x − y + 2z = 7 b) −x + y + 3z = 2
2x + y − z = 3 x − 3y + 5z = 6
x + y + z = 9 x − 2y + z = 2

c) 4x − 6y + 2z = 10 d) x + y − z = 3
2x − 3y + z = 0 2x − y + z = 5
x − 9y − 4z = 5 x − 2y + 2z = 6

7. Solve each linear system using row reduction.

a) x + 4y − z = −3 b) 2x + y − 4z = 3
x + 5y − 3z = 2 x + y + 3z = 2

c) x + 2y − z = 3 d) 5x + 3y + z = −1
3x + y + 2z = 1 2x + y − 2z = 2

8. Thinking/Inquiry/Problem Solving When two 3 by 3 systems of
equations were solved using row reduction, the results shown below were
obtained.

a) Why did zeros appear in the first three positions of the third row of 
each matrix?

b) What do these matrices tell you about the solution of the original system?
Explain, both algebraically and geometrically.

Two reduced matrices
Matrix 1 Matrix 2

 2 1 2 −3
0 −5 4 −5
0 0 0 0





 2 1 2 −3

0 −5 4 −5
0 0 0 10




9. Application  Three linear systems are shown below. Results from solving
the systems using row reduction are also shown, but not necessarily in the
same order. For each linear system, identify the corresponding reduced
matrix. Explain, both algebraically and geometrically.

Three linear systems
a) 2x − 3y + z = −6 b) 2x − 3y + z = −6 c) 2x − 3y + z = −1

x + y + z = 7 x + y + z = 7 4x − 6y + 2z = −2
3x − y + 2z = 4 3x − 2y + 2z = 1 6x − 9y + 3z = −3

Three reduced matrices
Matrix 1 Matrix 2 Matrix 3

 1 0 0 −1
0 1 0 3
0 0 1 5





 1 0 4

5 3
0 1 1

5 4
0 0 0 0





 2 −3 1 −1

0 0 0 0
0 0 0 0



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You can use a TI-83 or TI-83 Plus calculator to solve a linear system. There are
two methods, but the TI-83 Plus calculator is required for the second method.

Using matrix operations
Consider once again the system that was solved in Section 3.7.

2x + 4y + z = 2
5x + 5y + 3z = 17
4x − y + 3z = 26

To solve the system using matrix operations, follow these steps.

• Press @ Â ® ® to display the matrix edit menu.

• Press 1 to select 1: [A].

• Press 3 e 4 e to define a matrix with 3 rows and 4 columns.

• Press 2 e 4 e 1 e 2 e to complete the first row for 
2x + 4y + z = 2.

• Press 5 e 5 e 3 e 17 e to complete the second row for 

5x + 5y + 3z = 17.

• Press 4 e −1 e 3 e 26 e to complete the third row for 
4x − y + 3z = 26.

• Press @ q to return to the home screen.

Solving Linear Systems 
Using a Graphing Calculator

3.8
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• Press @ Â ® to display the matrix math menu.

• Press ∂ several times to scroll down to the line B:rref(.

• Press e to copy rref( to the home screen.

• Press @ Â 1 to select 1: [A] from the matrix names menu.

• Press ) e to display the solution.

The program displays the matrix of results. The solution is x = 3, y = −2,
and z = 4.

The number of equations does not have to be the same as the number of unknowns.
In the following example, we solve a system of 2 equations in 3 unknowns.



Solve the system using matrix operations, and interpret the solution
geometrically.

3x − y + 4z = 7
x + y − 2z = −5

Solution

Use the steps shown on the previous page. Set up a 2 by 4 matrix and enter
the data to obtain the following results.

On the third screen, the dots at the right indicate that the matrix is too large
to fit on the screen. You can use the arrow key to scroll to the right. In this
case, all that is missing are the square brackets to complete the matrix.

The third screen gives the solution in the following form:

x + 0.5z = 0.5
y − 2.5z = −5.5

Let z = t and solve for x and y to obtain the solution in parametric form.

x = 0.5 − 0.5t
y = −5.5 + 2.5t
z = t

These are parametric equations of the line of intersection of the planes with
the given equations.

Using the PolySmlt application
The solution of linear systems is so important that many routines have been
created to do this. The Applications menu of your TI-83 Plus calculator may
contain a program for solving linear systems. To determine if it does, press Ø.
You should see “PolySmlt” in the list of applications. If it is not there, it is
available for you to download to a computer at no cost from Texas Instruments’
website on the Internet. You can then transfer it to your calculator using TI’s
Graph Link software and cable. You can also download documentation containing
detailed instructions for using the application.

Example 1
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Consider once again the system that was solved in Section 3.7.

2x + 4y + z = 2
5x + 5y + 3z = 17
4x − y + 3z = 26

To solve the system using PolySmlt, follow these steps.

• Press Ø and select PolySmlt.

• Press any key to display the main menu.

• Select SimultEqnSolver.

• Enter the number of equations and the number of unknowns. Press e after each entry.

• Enter the data from the system in the matrix that appears.

• Press g to select SOLVE.

Notice that the program displays the results, using x1, x2, and x3 for the
variables.

The number of equations does not have to be the same as the number of
unknowns. In the following example, we solve a system of 2 equations in 
3 unknowns.

Solve the system using PolySmlt, and interpret the solution geometrically.

3x − y + 4z = 7
x + y − 2z = −5

Solution

Use the steps above. Enter the data to obtain the following results.

Example 2
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On the third screen, the values of x1 and x2 are given in terms of x3. These
are parametric equations of the solution. The variable x3 can take any value,
then the values of x1 and x2 can be calculated using the expressions
displayed. Therefore, the solution of the given system is:

x = 0.5 − 0.5t
y = −5.5 + 2.5t
z = t

These are parametric equations of the line of intersection of the planes with
the given equations.

When you use PolySmlt to solve certain systems, the entire solution 
may not fit on the screen. For example, you may obtain a screen like
the one at the right. The dots at the right on the line for x2 indicate 
that there is more information. To view this information, use the 
arrow key.

1. Use the results shown on either page 191 or page 193. Verify that the
solution satisfies all three given equations.

2. Use the results of either Example 1 or Example 2.

a) Verify that the parametric equations given in the solution satisfy both
given equations.

b) Interpret the result of part a geometrically.

3. Solve each linear system.

a) 3x − y + 2z = 2 b) 7x − 2y + 3z = 1
4x + 3z = 1 3x − 4y + 2z = −2
3x + 2y + 5z = 2 x − y + 2z = 5

4. Solve each linear system.

a) x + 2y − 2z = 3 b) 3x − y + z = −2
2x + 5y − z = 2 4x + 2y + 5z = 1

5. Find out what happens when you try to solve a linear system that has no
solution.

B

A

Exercises3.8

194 CHAPTER 3 EQUATIONS OF LINES AND PLANES



6. Communication

a) Find a way to use PolySmlt to determine parametric equations of a plane.

b) Describe your method, and illustrate it with an example.

7. Knowledge/Understanding Find parametric equations of the line of
intersection of the given planes. Explain your method.

a) π1: 2x + 3y − z = 7 and π2: x + 2y − 2z = 4

b) π1: 4x − 2y + 3z = 1 and π2: 3x + y + 3z = −8

8. Kathy works at The Clothing Store. She orders clothing from the manufacturer.
In August, she ordered 54 shirts, 33 sweaters, and 25 coats at a total cost of
$3245.60. In September, she ordered 92 shirts, 56 sweaters, and 37 coats at a
total cost of $5255.35. In October, she ordered 77 shirts, 45 sweaters, and 
28 coats at a total cost of $4196.70. What is the cost of one shirt, one sweater,
and one coat?

9. Application A farmer needs 500 kg of fertilizer that is 50% nitrogen, 15%
phosphorus, and 35% potassium. Three different brands are available. Their
compositions are shown below. How many kilograms of each brand should
he use?

10. Three business students are playing an investment game. They each pretend
to invest $100 000 in three stocks. The amounts invested in each stock and
the total gain or loss after one year are listed in the following table.
Determine the annual rate of return for each of the three stocks.

Stock #2 ($) Stock #3 ($) Gain/loss ($)Stock #1 ($)

50 000

30 000

50 000

Student A

Student B

Student C

20 000

40 000

50 000

12 570

6 030

–8 650

30 000

30 000

0

Brand Y (%) Brand Z (%)Brand X (%)

40

20

40

Nitrogen

Phosphorus

Potassium

60

0

40

50

20

30
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11. Thinking/Inquiry/Problem Solving An oven is set to 
200˚C. While it is warming up, its temperature, T degrees
Celsius, can be modelled by a quadratic function in terms of 
the number of seconds, t, after the oven has been turned on.

T = at2 + bt + c

The temperature was 20˚C at t = 0 s. It reached 70˚C at 
t = 49 s, and 100˚C at t = 84 s.

a) Determine the temperature after each time.
i) 60 s ii) 120 s

b) How long does it take the temperature to reach 200˚C?

12. A company produces three combinations of mixed vegetables that sell in 
1-kg packages. Italian style combines 0.3 kg of zucchini, 0.3 kg of broccoli,
and 0.4 kg of carrots. Oriental style combines 0.2 kg of zucchini, 0.5 kg of
broccoli, and 0.3 kg of carrots. French style combines 0.6 kg of broccoli,
and 0.4 kg of carrots. The company has 16 200 kg of zucchini, 41 400 kg of
broccoli, and 29 400 kg of carrots in stock. How many packages of each
style should they produce to use up their supplies?

Time (s)

T
em

pe
ra

tu
re

 (
˚C

)
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Spreadsheets can be used effectively to solve linear systems. The instructions in 
this section are for Microsoft Excel. If you use a different spreadsheet program,
consult its user manual.

Consider once again the system that was solved in Section 3.7.

2x + 4y + z = 2
5x + 5y + 3z = 17
4x − y + 3z = 26

One of the steps in solving this system was to multiply the first equation by 2
and subtract the third equation. When a calculator or computer solves a system
like this one, it is simpler to set it up so that it always multiplies each equation
by an appropriate coefficient from another equation. Otherwise, additional steps
would be needed to check for common factors. For the above system, the
computer will multiply the first equation by 4 and the third equation by 2 
before subtracting.

This spreadsheet shows the steps 
in the solution of the above system
that correspond to the steps in the
solution on pages 182 and 183 (see 
exercise 1).

To set up a spreadsheet like this
one, start a new spreadsheet 

Solving Linear Systems Using a Spreadsheet3.9
3.9 SOLVING LINEAR SYSTEMS USING A SPREADSHEET 197

document.
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• Enter the text in the appropriate cells in column A.

• Enter the numbers shown in the first three rows.

• Enter the following formulas in column B.
B5: = B1

B6: = B1*$B2 – B2*$B1

B7: = B1*$B3 – B3*$B1

B9: = B5

B10: = B6

B11: = B6*$C7 – B7*$C6

B13: = B11*$D9 – B9*$D11

B14: = B11*$D10 – B10*$D11

B15: = B11

B17: = B14*$C13 – B13*$C14

B18: = B14

B19: = B15

B21: = B17/$B17

B22: = B18/$C18

B23: = B19/$D19

• Copy the formulas in column B into columns C through E.

Compare the numbers in your spreadsheet with those on page 197. They should
be the same. If they are, you can use your spreadsheet in the exercises. If not,
you will need to make corrections to your formulas.

1. Compare the numbers in the spreadsheet on page 197 with the numbers
shown in the solution of the same system on page 184.

2. Test your spreadsheet. Use it to solve some systems of equations in the
examples or exercises of Section 3.6 or 3.7. Do the results agree with the
previous results?

3. Solve each linear system using your spreadsheet.

a) 4x − y + 3z = 26 b) 4x + 2y − 7z = 3
x + 3y + 6z = −2 5x − 6y + 3z = −4
3x − 2y + z = 5 3x − y + 4z = 7

B

A

Exercises3.9



4. A similar spreadsheet was created to solve a linear system of two equations
in two variables. The results for two different systems are shown below.

a) One of these systems has a line of solutions.
i) Which system is this?

ii) How can you tell this from the results?
iii) Determine parametric equations of the line.

b) How can you tell that the other system has no solution?

c) Explain why the division by 0 errors occurred for both systems.

System A System B

5. Communication To solve a 2 by 2 system using technology, you could
create a spreadsheet like the one on page 197 that displays results like those
in exercise 4. However, this is not necessary because you can use the one
you have already created for a 3 by 3 system.

a) Explain how you could use your spreadsheet to solve a 2 by 2 system,
without changing any of the formulas.

b) Use your spreadsheet to solve each system. Check the results mentally.
i) 4x + 7y = 10 ii) 3x + 2y = 19

3x − 2y = −8 4x − 3y = 14

6. Knowledge/Understanding A spreadsheet was used to solve two linear
systems, with the results shown at the top of the following page.

a) One of these systems has a line of solutions.
i) Which system is this?

ii) How can you tell this from the results?
iii) Determine parametric equations of the line.

b) How can you tell that the other system has no solution?

c) Explain why the division by 0 errors occurred for both systems.

3.9 SOLVING LINEAR SYSTEMS USING A SPREADSHEET 199



System A System B

7. Application Use your spreadsheet to help you find parametric equations of
the line of intersection of the given planes. Explain your method.

a) π1: 3x + 2y − z = 5 and π2: 4x + 3y − 2z = 5

b) π1: x + 3y + z = 10 and π2: 2x − 6y − z = −1

8. Tamika has a part-time job at the ballpark. On Friday, she sold 12 posters,
18 pennants, and 7 caps for a total of $368.72. On Saturday, she sold 
37 posters, 29 pennants, and 18 caps for a total of $860.75. On Sunday,
she sold 22 posters, 19 pennants, and 9 caps for a total of $505.85. 
How much do one poster, one pennant, and one cap cost?

9. Thinking/Inquiry/Problem Solving The total number of 
oranges, N, in a square pyramid of oranges is a cubic 
function in terms of the number of layers, x.

N = ax3 + bx2 + cx

a) How many oranges are there in a square pyramid with each
number of layers?
i) one layer ii) two layers iii) three layers

b) Determine the values of a, b, and c.

10. In a certain study, the number of accidents in one month, n, was approximated
by a quadratic function in terms of the age of the driver, x years.

n = ax2 + bx + c

Eighteen-year-old drivers had 2478 accidents. Thirty-five-year-old drivers
had 1875 accidents. Sixty-year-old drivers had 2765 accidents. Determine
the values of a, b, and c.

200 CHAPTER 3 EQUATIONS OF LINES AND PLANES

Art not 
available due 
to copyright 

issues.



11. A bridge is designed with expansion joints to allow for thermal expansion.
The exact length of a steel girder, L millimetres, is a linear function in terms
of the temperature, T degrees Celsius.

L = mT + b

a) At 5˚C, a certain girder is 9982 mm long. At 34˚C, it is 10 016 mm long.
Determine the values of m and b for this girder.

b) What do m and b represent?

12. On a certain road surface, the stopping distance of a car, d metres, is a
quadratic function in terms of its speed, v kilometres per hour.

d = mv2 + bv

A car travelling at 50 km/h takes 48 m to stop. A car travelling at 100 km/h
takes 170 m to stop. Determine the values of m and b.

13. In exercise 20 on page 181, you showed that the solution of a linear system
of three equations in three variables is given by the following formulas.

x =
−⇀
d •

−⇀
b × −⇀c

−⇀a •
−⇀
b × −⇀c

, y =
−⇀a •

−⇀
d × −⇀c

−⇀a •
−⇀
b × −⇀c

, z =
−⇀a •

−⇀
b ×

−⇀
d

−⇀a •
−⇀
b × −⇀c

In these formulas, −⇀a ,
−⇀
b , and −⇀c are vectors formed by the coefficients of 

x, y, and z, respectively. The vector 
−⇀
d is formed by the constant terms. Use

these formulas to create a spreadsheet for solving linear systems.

C
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Review Exercises

Equations of a Line
2-space 3-space 

(a1, a2) is a point on the line. (a1, a2, a3) is a point on the line.
[m1, m2] is a direction vector. [m1, m2, m3] is a direction vector.

Vector equation Vector equation

[x, y] = [a1, a2] + t[m1, m2] [x, y, z] = [a1, a2, a3] + t[m1, m2, m3]

Parametric equations Parametric equations

x = a1 + tm1

y = a2 + tm2

x = a1 + tm1

y = a2 + tm2

z = a3 + tm3

Symmetric equation Symmetric equations
x − a1

m1
= y − a2

m2

x − a1

m1
= y − a2

m2
= z − a3

m3

where m1 ≠ 0, and m2 ≠ 0 where m1 ≠ 0, m2 ≠ 0, and m3 ≠ 0

Equations of a Plane
(a1, a2, a3) is a point on the plane.

Mathematics Toolkit
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[u1, u2, u3] and [v1, v2, v3] are two non-collinear vectors on the plane.

Vector equation

[x, y, z] = [a1, a2, a3] + s[u1, u2, u3] + t[v1, v2, v3]

Parametric equations

x = a1 + su1 + tv1

y = a2 + su2 + tv2

z = a3 + su3 + tv3

Scalar equation

Ax + By + Cz + D = 0, where A, B, and C are the components of its normal vector,−⇀n = [A, B, C]. The normal vector is perpendicular to the plane.
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Two Lines
Two distinct lines may intersect, be parallel, or be skew.

Lines and Planes
Suppose a line and a plane are given. The line may:

• intersect the plane at a unique point.

• lie on the plane.

• be parallel to the plane and not intersect it.

Two Planes
Two distinct planes may be either parallel or intersect in a line. When two planes intersect
in a line, the direction vector of the line is the cross product of the normal vectors of the
planes.

Linear Combinations of Equations of Planes
Suppose two planes with scalar equations A1x + B1y + C1z + D1 = 0 and
A2x + B2y + C2z + D2 = 0 intersect in a line. Any linear combination of these equations
represents a plane that contains this line. In particular, this is true of the following equation.

A1x + B1y + C1z + D1 + k(A2x + B2y + C2z + D2) = 0

Three Planes
Three distinct planes can be situated with respect to each other in five different ways.
The three orientations shown below correspond to inconsistent systems of equations.

The two orientations shown below correspond to consistent systems of
equations. There is either a line of solutions or a unique solution.

π7

π4

π1

π6 π4

π1

π5

π4

π1

π4

π2
π1

π3
π2
π1
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1. Consider the equation y = 3. What does this equation represent in R2? What
does this equation represent in R3? Explain. Support your explanation with
sketches.

2. Consider the equation x = 3. What does this equation represent in R2? What
does this equation represent in R3? Explain. Support your explanation with
sketches.

3. Find the coordinates of the point of intersection of the following lines.

L1: x + 3
−1

= y − 7
4

= z − 2
1

L2: line through the points A(0, 2, 1) and B(–4, 4, 1)

4. Find the coordinates of the point of intersection of the following lines.

L1: x + 2
3

= y − 1
−1

= z − 1
1

L2: x − 7
−1

= y + 4
1

, z = 3

Test for a Unique Solution
Three distinct planes have normal vectors −⇀n1 , −⇀n2 , and −⇀n3 . To test for a unique solution,

calculate −⇀n1 • −⇀n2 × −⇀n3 .

• If −⇀n1 • −⇀n2 × −⇀n3 ≠ 0 , the normal vectors are not coplanar. There is a single point of
intersection.

• If −⇀n1 • −⇀n2 × −⇀n3 = 0 , the normal vectors are coplanar. There may or may not be points 
of intersection. If there are any points of intersection, then it is a line.

Solving a Linear System Using Matrices

Use row reduction to reduce a matrix of the form 


 ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


 to one 

of the form 


 1 0 0 ∗

0 1 0 ∗
0 0 1 ∗


 .

If this is possible, there is a unique solution.
If it is not possible, there is a line of solutions if the matrix can be reduced 

to one of the form 


 1 0 ∗ ∗

0 1 ∗ ∗
0 0 0 0


.

If neither of these is possible, there is no solution.
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5. The point A(1, 4, 2) and the direction vector 
−⇀
d = [2, −1, 0] are given.

a) Find a vector equation of the line l1 passing through point A with

direction vector 
−⇀
d .

b) Find three other points on l1.

c) Find the parametric equations of l1.

d) Find the symmetric equations of l1.

6. Which two of the following lines are the same? Explain.

a) [x, y, z] = [1, 2, 3] + s[3, −1, 2]

b) [x, y, z] = [−2, 3, 1] + t[−3, 1, −2]

c) [x, y, z] = [7, 0, 6] + p[3, −1, 2]

7. The points A(1, 2, 3), B(–1, 3, 2), and C(3, –2, –1) are given.

a) Determine a vector equation of the line that passes through A and that 
is parallel to the segment BC.

b) Determine the parametric equations of the line that passes through B and
that is parallel to the segment AC.

c) Determine the symmetric equations of the line that passes through C and
that is parallel to the segment AB.

8. Find the scalar equation of each plane.

a) the plane with normal vector −⇀n = [4, −1, 9] passing through the point
R(2, –1, –1)

b) the plane passing through S(4, 0, –1) and containing the direction vectors−⇀m1 = [2, 1, 5] and −⇀m2 = [−3, 0, 1]

c) the plane passing through the points A(4, –5, 1), B(2, 3, 3), and 
C(0, 2, –4)

9. The vector, parametric, and scalar equations of three planes are given below.
Two of the planes are the same. Which planes are they?

π1: −⇀p = [2, 3, 5] + s[1, 2, 4] + t[1, 0, 2]

π2: x = 2 + s, y = 3 + 2t, z = 3 + 2s + 2t

π3: 2x + y − z = 2

10. Find the scalar equation of the plane containing the point A(–3, 1, 2) and 

that is parallel to the lines x + 3
1

= y
2

= z − 5
3

and x = 2, y + 1
−2

= z + 3
1

.
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11. Find the scalar equation of the plane through the points P(2, 2, 2) and 
Q(3, 2, 1), and that is perpendicular to the plane 4x − y + 2z − 7 = 0.

12. Given π1: 3x − 4y + z − 35 = 0 and π2: ax + by − 5z + 23 = 0, find the
relationship between a and b that will make π1 perpendicular to π2.

13. A plane has normal vector −⇀n = [3, −1, 4] and passes through the point
A(1, 2, 5).

a) Determine the scalar equation of the plane.

b) Determine parametric equations of the plane.

14. Determine, if possible, the point(s) of intersection of each line and each
plane. If there is a point of intersection, find the angle between the line and
the plane.

a) x + 4
2

= y + 2
3

= z − 3
2

and 3x − y + 2z − 3 = 0

b) x − 2
3

= y + 1
−2

= z + 5
−1

and 3x + y + 7z + 30 = 0

15. Show that the given line lies on the given plane.

a) l: [x, y, z] = [0, 4, −4] + t[1, −2, 1] and π: x + 5y + 9z + 16 = 0

b) l: [x, y, z] = [1, 1, 1] + t[0, 2, 1] and π: 3x − 2y + 4z − 5 = 0

16. Determine the projection of the point (1, –1, 4) on the plane
2x + y − 2z − 6 = 0.

17. Two lines with the following symmetric equations are given.

L1: x − 4
−1

= y − 2
−2

= z + 3
2

and L2: x + 6
−2

= y + 2
2

= z − 3
1

a) Prove that L1 and L2 are skew lines.

b) Find the equations of two parallel planes containing L1 and L2.

18. Find vector and symmetric equations for the line of intersection of each 
pair of planes.

a) π1: 3x + 2y − z = 0 and π2: 2x + 2y − 3z = 0

b) π1: 2x − y + 2z = 6 and π2: x − 3y + 4z = 1

19. Find a set of parametric equations for the line of intersection of the planes
5x + y + z − 9 = 0 and x + y − z − 1 = 0.

20. The planes π1: 2x + 3y + z = 2 and π2: 5x − 2y + 2z = −4 are given. Find
the scalar equation of the plane that contains the line of intersection of π1

and π2, and that passes through the origin.
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21. Given the planes 3x − 2y + 7z − 8 = 0 and 2x + y − 5z + 1 = 0:

a) Explain how you can tell that the planes intersect in a line.

b) Write the equation of any other plane that contains this line.

c) Write the scalar equation of any plane that is parallel to the line.

22. Find the equation of the plane that passes through the line of intersection of
the planes 3x + 4y − z + 5 = 0 and 2x + y + z + 10 = 0, and that satisfies
each condition.

a) It passes through the point (–2, 5, 1).

b) It is perpendicular to the plane 6x + y + 2z − 5 = 0.

23. The equations of three planes are given.

π1: x + 2y + 3z = −4

π2: x − y − 3z = 8

π3: 2x + y + 6z = −14

a) Show that the three planes intersect at a single point.

b) Find the coordinates of the point of intersection.

24. Show that the following planes form a triangular prism.

π1: 3x + 2y + z = 0

π2: x + 2y + 3z = 4

π3: x + y + z = 16

25. Solve each linear system using row reduction.

a) 2x + 3y = −4 b) 2x − y = −4
3x + y = 1 3x + 2y = 1

c) 3x + 2y − z = 6 d) 3x + y − 2z = −14
x − 4y + z = 7 2x − 3y + 4z = −23
2x − 6y − 5z = −1 5x + 4y − 10z = −13

26. Use the method of row reduction to solve each system of equations
completely. Give a geometric interpretation of the solution.

a) x + 2y + 3z = 5 b) 4x − 3y + 2z = 5
2x − y − 4z = −10 x − 2y + z = 3
5x + 7y + 6z = 7 3x + 4y − z = −5



1. Show that the following lines intersect and determine the angle of intersection.

L1: x − 2
1

= y − 6
5

and L2: x − 4
2

= 1 − y
1

2. Show that the following lines are parallel.

L1: x − 2
1

= y − 1
−2

= z + 1
3

and L2: x − 4
1

= y + 3
−2

= z − 1
3

3. Show that the following lines are skew.

L1: the line through the points A(1, 1, 1) and B(1, –1, –1)

L2: the line through the points C(–1, –1, 1) and D(–1, 1, –1)

4. Find the scalar equation of the plane that is perpendicular to the plane with
normal vector −⇀n = [3, 1, −2] and that passes through the points A(2, –6, –1)
and B(1, 2, −4).

5. Thinking/Inquiry/Problem Solving Determine the scalar equation of the
plane that contains the point A(3, –1, 1) and the line with symmetric 

equations x + 1
2

= y − 1
−3

= z − 2
−3

.

6. Determine the coordinates of all points of intersection for each line and plane.

a) L: x − 4
2

= y
−1

= z − 11
1

and π: x + 3y − z + 1 = 0

b) L: x − 1
2

= y + 1
4

= z − 2
1

and π: 4x − 3y + 4z − 15 = 0

Self-Test
7. Knowledge/Understanding Find parametric equations of the line of
intersection of the following planes.

π1: 5x + 4y + 3z = 2 and π2: 3x + 2y + z = 0

8. Communication Suppose you have the equations of three planes. Describe
a test you could use to determine, without solving the system, whether or
not the planes intersect at a single point. Make up an example to illustrate
your test.

9. Solve each linear system using row reduction.

a) 3x + 2y = −3 b) x + 6y − 2z = 2
5x + 4y = 2 2x − 5y + 4z = 3

7x + 3y − z = 1

10. Application The sum of the digits of a 3-digit number is 21. If the units
and tens digits are interchanged, the sum is increased by 18. If the hundreds
and tens digits are interchanged, the number is increased by 180. What is 
the number?
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Curriculum Expectations
By the end of this section you will:

• Solve complex problems and present the
solutions with clarity and justification.

• Solve problems of significance, working
independently, as individuals and in
small groups.

• Solve problems requiring effort over
extended periods of time.

• Demonstrate significant learning and 
the effective use of skills in tasks 
such as solving challenging problems,
researching problems, applying
mathematics, creating proofs, using
technology effectively, and presenting
course topics or extensions of course
topics.
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The problems in this section offer you the opportunity to solve some complex
problems related to the topics you have studied. Some of these problems are
challenging. You may find it helpful to work with others, to share ideas and
strategies. You may be unable to complete a solution to some of the problems at 
the first attempt. Be prepared to research, to return to a problem again and again.



Focus on … The Dot Product

Suppose we draw a triangle in R2, and calculate the dot products of the side
vectors having tails at each vertex. This gives three dot products. Suppose we
add these values. Is the result related to the triangle in any way?

Problem 1
a) For each triangle in the diagram:

i) Calculate the dot products of the two vectors with tails at
each vertex.

ii) Determine the sum of the dot products.

b) Choose any of the triangles in part a. Suppose this triangle 
were moved to a different position, without changing its size 
or shape. Explain why the sum of the dot products you
calculated in part a would not change.

Problem 2
This problem is a generalization of problem 1. Let A, B, and C be the vertices
of any triangle with side lengths a, b, and c.

a) Show that bc cos A + ca cos B + ab cos C = a2 + b2 + c2

2
.

b) Describe the special case that occurs for a right triangle.

Focus on … Plotting Points and Lines in R3 on Paper

When we plot points in R3 on a two-dimensional piece of paper, it 
is possible for different points to coincide on the diagram. In the
next three problems, assume that the diagrams are created like the
one at the right. The positive x-axis makes an angle of 135˚ with 
the positive y-axis, and the scales are the same along all three axes.

Problem 3
a) The diagram shows the point A(3, 6, 8) in R3. Copy the diagram

on grid paper, and determine the coordinates of three other
points in R3 that would be plotted in the same position on 
the diagram.

b) Describe how the coordinates of the points in part a are related.

6

3

8

A

y

z

x

O

A
J

L
K

R

Q
P

B

y

x
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Problem 4
In the diagram for problem 3, point A has coordinates (3, 6, 8). This is actually
a two-dimensional diagram that was created on a computer. Point A was plotted
using the approximate coordinates (3.9, 5.9) relative to the origin and the 
y- and z-axes.

a) Explain how the coordinates (3.9, 5.9) can be determined from the
coordinates (3, 6, 8).

b) Let (x3, y3, z3) represent the coordinates of a point, A, in R3. Write formulas
for the coordinates (y2, z2) of the point A′ in R2 that should be plotted to
represent point A on paper.

c) Check your formulas in part b. Use the 3 points determined in problem 3.

Problem 5
When we plot a line in R3 on a two-dimensional piece of paper, it is possible
for all the points on the line to coincide on the diagram. Such a line will appear
as a point. Given the parametric equations of the line in R3, how can we tell if
this will happen?

Focus on … Area of a Parallelogram in R2

In Section 2.4, we calculated the area of a parallelogram in R3 by calculating
the cross product of two side vectors and determining its magnitude. Although
cross products are not defined for vectors in R2, we can still use cross products
to determine areas of parallelograms in R2.

Problem 6
The diagram below left shows the parallelogram in R2 determined by the vectors −⇀
OU = [4, 2] and 

−⇀
OV = [1, 6]. You can calculate its area by visualizing the same 

parallelogram drawn on the xy-plane in R3 (below right). Calculate the area of the

parallelogram determined by the vectors 
−⇀
OU = [4, 2, 0] and 

−⇀
OV = [1, 6, 0]. This 

is the area of the parallelogram in R2.

V

U

y

z

x

O
x

U(4, 2)

y

V(1, 6)
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Problem 7
To calculate the area of a parallelogram in R2, we do not need to go into three
dimensions and use cross products. We should be able to determine the area
using only two-dimensional concepts.

a) Find a way to determine the area of the parallelogram in the first diagram
for problem 6 without using cross products.

b) Derive a formula for the area of a parallelogram in R2 determined by the 

vectors −⇀a = [a1, a2] and 
−⇀
b = [b1, b2] .

Focus on … Scalar Triple Products

In Section 2.5, we used the scalar triple product, −⇀u • −⇀v × −⇀w , to test for
coplanar vectors in three dimensions. For vectors that are not coplanar,−⇀u • −⇀v × −⇀w has a non-zero value. In the next problem, you will determine
how the value of −⇀u • −⇀v × −⇀w is related geometrically to the vectors −⇀u , −⇀v ,
and −⇀w .

Suppose −⇀u • −⇀v × −⇀w ≠ 0 , so the vectors −⇀u , −⇀v , and −⇀w are 
not coplanar. When drawn tail-to-tail, they form an object,
called a parallelepiped, whose faces are parallelograms.

Problem 8

a) Vectors −⇀v and −⇀w determine a parallelogram that serves as
the base of the parallelepiped. Write an expression for the area of the base.

b) The vector −⇀v × −⇀w is perpendicular to the base. Find the magnitude of the
projection of −⇀u on −⇀v × −⇀w . This represents the height of the parallelepiped.

c) The volume of the parallelepiped is the product of the base area and the 

height. Show that the volume of the parallelepiped is 
∣∣−⇀u • −⇀v × −⇀w ∣∣ .

d) Under what condition is it not necessary to use the absolute value signs in
part c? 

Problem 9

Explain why −⇀u • −⇀v × −⇀w = −⇀v • −⇀w × −⇀u = −⇀w • −⇀u × −⇀v .

The pattern in the letters in the above equations is an example of 
cyclic symmetry. Cyclic symmetry also occurred in problem 2.

⇀u
⇀w

⇀v

⇀u ⇀w

⇀v
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Problem 10
Calculate the volume of each parallelepiped.

a) the parallelepiped formed by the vectors −⇀u = [2, 1, 3] , −⇀v = [1, −4, 2] ,
and −⇀w = [0, 3, 5]

b) the parallelepiped determined by the points A(1, 2, 2), B(3, 2, 0), C(2, 4, 3),
and D(–1, 4, 3)

Problem 11
Show that the dot and the cross in −⇀u • −⇀v × −⇀w can be interchanged without
changing its value. That is, explain why:

−⇀u • −⇀v × −⇀w = −⇀u × −⇀v • −⇀w

Focus on … Perpendicular Distance

In exercise 20 on page 162, you calculated the perpendicular distance from given
points to given planes. In part a, you may have calculated the perpendicular
distance from A(2, 3, –1) to the plane 2x + y − 2z + 9 = 0 using the following
method.

Since the normal vector of the plane is −⇀n = [2, 1, −2] , the line through A 
and perpendicular to the plane has parametric equations x = 2 + 2t , y = 3 + t,
z = −1 − 2t. Solve these with the equation of the plane to determine the point of
intersection, B(–2, 1, 3). The length of segment AB is 6, which is the
perpendicular distance from A to the plane.

A simpler method uses projections, and applies to other problems involving
perpendicular distance. You will use this method in problem 12, then apply it 
to other situations involving perpendicular distance in problems 13 and 14.

Problem 12
a) Calculate the perpendicular distance from A(2, 3, –1) to the plane

2x + y − 2z + 9 = 0 using the following method.
By inspection, determine the coordinates of any point C on the plane. 

Calculate the projection 
−⇀
AC ↓ −⇀n , where −⇀n is the normal vector to the 

plane. Calculate the magnitude of 
−⇀
AC ↓ −⇀n .

b) Use a diagram to explain why the magnitude of 
−⇀
AC ↓ −⇀n is the

perpendicular distance from A to the plane.
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Problem 13
Calculate the perpendicular distance from the point P(6, 3, –10) to the line 
x − 6

4
= y + 2

3
= z + 5

−5
.

Problem 14
In problems 12 and 13, you calculated the perpendicular distance from a point
to a plane and to a line. There are situations involving two lines or two planes
where it is also meaningful to calculate perpendicular distances. Make up an
example and calculate the perpendicular distance between:

a) two parallel lines.

b) two skew lines.

c) two parallel planes.

Focus on … Planes from Symmetric Equations

Suppose we cross-multiply the symmetric equations of a line in R2. For example:
x − 3
−2

= y + 4
3

3(x − 3) = −2(y + 4)
3x + 2y − 1 = 0

The result is the equation of the line in a different form. This is the general equation
of the line.

Problem 15
The situation is different in R3. Consider typical symmetric equations of a line, such as:

x − 2
6

= y − 5
10

= z − 4
7

a) Choose any two of these equations, cross-multiply, and simplify the result.
Repeat for other pairs of equations.

b) Since the equations you obtained have the form Ax + By + Cz + D = 0, they
represent planes in R3. Describe how these planes are related to the line.

c) Draw a diagram to show how the planes and the line are related.

Problem 16
Each plane in problem 15 contains the given line and is parallel to one of the
coordinate axes. Make up examples and draw diagrams to illustrate the special
cases that occur when the given line is:
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a) parallel to one of the coordinate planes.

b) parallel to one of the coordinate axes.

Other Problems

Problem 17
Points A and B are any two points on a circle with centre O. The heads of 

vectors 
−⇀
OA and 

−⇀
OB lie on the circle. Vector 

−⇀
OC is the sum of 

−⇀
OA and 

−⇀
OB. 

In the diagram, the head of 
−⇀
OC lies outside the circle. Explain your answer

to each question.

a) Is it possible for the head of 
−⇀
OC to lie on the circle?

b) Is it possible for the head of 
−⇀
OC to lie inside the circle?

c) Where are all the possible positions for C?

Problem 18
Illustrate the results of problem 17 using The Geometer’s Sketchpad.

Problem 19
Let A be the point (1, 1). Describe the locus of the point P which moves
according to each condition. Draw a graph to illustrate each result.

a)
−⇀
OP •

−⇀
OA = 0 b)

−⇀
OP •

−⇀
OA = 0.5 c)

−⇀
OP •

−⇀
OA = 1

Problem 20

The vectors −⇀a and 
−⇀
b have an angle θ between them. Determine −⇀a ↓ −⇀

b for
each given value of θ.

a) 0˚ b) 90˚ c) 180˚

Problem 21
Determine two vectors that are perpendicular to each other and also perpendicular
to −⇀u = [4, −3, 1] .

Problem 22

Let −⇀a = [1, 2, 3] ,
−⇀
b = [−1, 2, −1] and −⇀c = [0, 1, −2] . Do these vectors,

taken in this order, satisfy the right-hand rule? Explain.

O

A

B

C
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Problem 23

Given −⇀a =
−⇀
OA,

−⇀
b =

−⇀
OB and −⇀c =

−⇀
OC where points A, B, and C are 

non-collinear, explain why the vector −⇀v = −⇀a ×
−⇀
b +

−⇀
b × −⇀c + −⇀c × −⇀a

is perpendicular to the plane containing A, B, and C.

Problem 24
Determine the perpendicular distance between:

a) the parallel planes x + 2y + 3z + 6 = 0 and x + 2y + 3z − 6 = 0.

b) the parallel lines x − 1
1

= y
2

= z + 2
−1

and 
x
1

= y − 1
2

= z − 3
−1

.

c) the skew lines x + 2
3

= y − 1
−1

= z − 3
−7

and 
x − 2

2
= y − 2

−1
= z − 2

−2
.

Problem 25
Write the symmetric equations of any line that is skew to 

the line x − 3
1

= y + 2
2

= z − 1
3

. Explain how you can be 

certain that the two lines are skew lines.

Problem 26
Given the point P(1, 2, 3), find the two points, A and B 
on the line −⇀p = [9, 5, 1] + t[4, 3, 1] such that ∣∣−⇀AP

∣∣ =
∣∣−⇀BP

∣∣ = 5.

Problem 27
Let P be any point on the line
l1: [x, y, z] = [4, 8, −1] + t[2, 0, −4] , and let Q be 

any point on the line l2: x − 7
−6

= y − 2
2

= z + 1
2

.

a) Prove that the locus of the midpoint of segment PQ 
is a plane.

b) Determine the scalar equation of the plane in part a.
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Problem 28
Find the scalar equation of the plane which passes through the line of intersection
of the planes x + y + z − 4 = 0 and y + z − 2 = 0, and satisfies each condition.

a) It is 2 units from the origin.

b) It is 3 units from the point A(5, –3, 7).

Challenge Problem 29
a) Refer to the diagram on page 135, which shows the line in R3 with parametric

equations x = −2 + 2t , y = 5 + 4t , z = 3 + t. This is actually a line on a 
two-dimensional diagram with y- and z-axes. Determine the slope and the 
z-intercept of this line.

b) Given the parametric equations of a line in R3, how can we determine the
slope and the z-intercept of the line on a two-dimensional diagram that
represents it?

Challenge Problem 30
This problem appears deceptively simple, but the challenge is to obtain three 
independent equations in x, y, and z that can be solved to determine the areas 
of the regions.

A square has sides 6 cm long. Four quarter circles are inscribed in the square.
Determine the areas of the three different kinds of regions that are formed.

Challenge Problem 31

Let −⇀a =
−⇀
OA and 

−⇀
b =

−⇀
OB be two vectors drawn tail-to-tail, forming

a parallelogram OACB. Let M be the midpoint of the diagonals of the 
parallelogram. Squares with sides MC and MB are constructed, as shown.

a) Prove that:
−⇀a •

−⇀
b = (area of square on MC) − (area of square on MB)

b) Describe what happens in each situation.

i) The vectors −⇀a and 
−⇀
b are collinear.

ii) The vectors −⇀a and 
−⇀
b are perpendicular.

iii) ∠ BOA is obtuse.

c) Suppose the dot product −⇀a •
−⇀
b is defined to be:

−⇀a •
−⇀
b = (area of square on MC) − (area of square on MB)

Prove that −⇀a •
−⇀
b =

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ , where θ = ∠ BOA.

A

M

C

O

B

y

zx

6 cm
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Examples of Proof 4

Babylonian tablets, dated
approximately between 1800
B.C.E. and 1600 B.C.E., contain
the earliest tangible record of
the Pythagorean Theorem. 

Photo not available due
to copyright issues.
Curriculum Expectations
By the end of this chapter, you will:

• Prove some properties of plane figures
algebraically, using analytic geometry.

• Prove some properties of plane figures,
using vector methods.

• Prove some properties of plane figures,
using indirect methods.

• Demonstrate an understanding of the
relationship between formal proof and
the illustration of properties that is
carried out by using dynamic geometry
software.

• Generate multiple solutions to the same
problem.

• Use technology effectively in making
and testing conjectures.

• Demonstrate significant learning and
the effective use of skills in tasks such
as solving challenging problems,
researching problems, applying
mathematics, creating proofs, using
technology effectively, and presenting
course topics or extensions of course
topics.



In earlier grades, we discovered many geometric properties
through investigation. For example, we determined that the
sum of the angles in a triangle is 180˚ by tearing the corners
off a paper triangle and reassembling the pieces to form a
straight line. When we repeated this with other triangles, we
obtained the same result. We conjectured that the sum of the
angles in any triangle is 180˚.

We demonstrated the same result using The Geometer’s
Sketchpad. We constructed a triangle, and changed its size
and shape by dragging the vertices to new positions. We
observed that although the measures of the angles changed,
the sum of the angles was always 180˚. We conjectured that
the sum of the angles in any triangle is 180˚. We cannot be 
certain that the sum of the angles in every triangle is 180˚
because we cannot draw all possible triangles even with 
a computer.

When we make a conjecture by observing and generalizing a pattern, we are
using inductive reasoning. With inductive reasoning, we reach a conclusion on
the basis of a series of examples. However, we can rarely look at all possible
examples. Thus, we can never be certain that a conclusion based on inductive
reasoning is always true.

For example, suppose we want to determine if there is a relationship between 

A

CB

m∠ CAB = 68.2˚

m∠ ABC = 44.9˚

m∠ BCA = 67.0˚

m∠ CAB + m∠ ABC + m∠ BCA = 180.0˚

A

A
B C

B C

Demonstration and Proof4.1
the number of points on a circle and the number of regions formed by connecting
the points.

We look at specific cases and try to find a pattern.

1 2

1 3
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It appears that for each additional point on the circle, the
number of regions doubles. Inductive reasoning suggests
that for 6 points on the circle, 32 regions will be formed;
for 7 points, 64 regions will be formed; and so on.

However, when we join 6 points, we find that only
31 regions are formed. Our conjecture was incorrect.

It has been proved that the number of regions formed by
joining n points on a circle is given by the expression:

n4 − 6n3 + 23n2 − 18n + 24
24

Substituting values of n from 1 to 7 gives:

1, 2, 4, 8, 16, 31, 57

Thus, for 7 points, 57 regions are formed, not 64 as we predicted.
Inductive reasoning led to an incorrect conclusion.

This example illustrates that we cannot be certain that a conclusion is true
in general just because it is true in particular instances. Thus, when we
discover a pattern, we can accept its validity only when we can prove that
it is true for all possible cases. In this chapter and the next, we will prove
many of the geometric properties you discovered in earlier grades.

On page 220, we discussed the angle sum property of a triangle. We will
now give two proofs of this result.

Angle Sum Theorem
In any triangle, the sum of the angles is 180˚.

∠ A + ∠ B + ∠ C = 180˚

When testing
a conclusion
obtained by
inductive
reasoning, it only
takes one example
that does not work
to prove the
conclusion false.
An example that
shows that a
possible conclusion
is false is called a
counterexample.
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Proof using rotations
Construct a large �ABC on a piece of paper. Using a pencil and a ruler,
follow these steps:

Place the edge of the ruler
along side BC. With the 
pencil at B, rotate the ruler
counterclockwise about B 
until the edge lies along AB.

With the pencil at A, rotate 
the ruler counterclockwise 
again until the edge lies along AC.

With the pencil at C, rotate
the ruler counterclockwise 
again until the edge lies along BC.

After each step, the ruler rotates through one angle in the triangle. When the
ruler returns to side BC, it is upside down compared with its original position.
Thus, the ruler has rotated through an angle of 180˚. Therefore, the sum of the
angles in the triangle is 180˚.

• Does this prove the angle sum theorem for all triangles and not just the
one in the diagram? Explain.

• Does it matter that the three rotations have different centres? Explain.

Something to Think About

12345678910
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Proof using parallel lines
In the diagram, �ABC represents any triangle. Construct a line
through A, parallel to BC, and call it DE.

DE is parallel to BC. Alternate angles between parallel lines are equal.

So,
∠ DAB = ∠ ABC
∠ EAC = ∠ ACB

➀
➁

Since ∠ DAE is a straight angle:
∠ DAB + ∠ BAC + ∠ EAC = 180˚ ➂

Substitute ➀ and ➁ into ➂ .
∠ ABC + ∠ BAC + ∠ ACB = 180˚

Therefore, the sum of the angles in every triangle is 180˚.

The above proof involved geometric properties. We can also prove properties in
arithmetic and algebra.

Consider these products of two odd numbers:
3 × 5 = 15
7 × 9 = 63

11 × 9 = 99
17 × 15 = 255

It appears that the product is always odd. We could make the following conjecture:

The product of any two odd integers is an odd integer
To prove this statement, we use logical reasoning to explain why the product 
of every possible pair of odd integers is odd. We will use the fact that an even
integer is divisible by 2, so it can be represented by the expression 2n, where n
is any integer. An odd integer leaves a remainder of 1 when it is divided by 2,
so it can be represented by 2n + 1.

• Refer to the geometric properties in the student reference. Which
one(s) did we use in the above proof?

• How do we know for certain that the sum of the angles forming a
straight angle is 180˚?

Strategy
Notice how a line
was constructed
and used to
advantage in the
above proof.

Something to Think About

Parallel lines

Student Reference

A
D E

CB

Constructing the
line through one
vertex and parallel
to the opposite
side is not obvious,
but it is the key
to solving this
problem. We do
not know who first
did this, but we do
know that he or
she lived more than
2000 years ago.
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Proof:

Let 2n + 1 and 2m + 1 represent any two odd integers.
(2n + 1)(2m + 1) = 4nm + 2n + 2m + 1

= 2(2nm + n + m) + 1
This expression is an odd integer because it has the form 2k + 1 where k is an
integer. Therefore, the product of any two odd integers is an odd integer.

1. Many natural numbers can be written as the sum of consecutive numbers.
Here are some examples:
10 = 1 + 2 + 3 + 4 18 = 5 + 6 + 7
33 = 16 + 17 75 = 13 + 14 + 15 + 16 + 17

We might use inductive reasoning to conclude that every natural number
can be written as the sum of consecutive numbers. Find a counterexample
to show that this is not true.

2. Many natural numbers can be written as the sum of three
or fewer perfect squares. For example:
8 = 22 + 22 26 = 42 + 32 + 12

36 = 62 70 = 62 + 52 + 32

We might suspect that all natural numbers can be written
as the sum of three or fewer perfect squares. Find a
counterexample to show that this is not true.

3. Show that the following statements are false by finding a counterexample.

a) A number that is not positive is negative.

b) The square of a number is always greater than the number.

c) The altitude of a triangle always lies inside the triangle.

d) Any number divided by itself equals 1.

e) All prime numbers are odd.

All natural numbers can be
expressed as the sum of four or
fewer perfect squares. However,
this cannot be proved using
inductive reasoning because we
cannot be certain that there is
no number that requires more
than four perfect squares.

A

Exercises4.1

• How does the above proof explain why the product of every possible
pair of odd integers is an odd integer?

Something to Think About
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4. By using a calculator, sin 30˚ = 0.5. Is this a proof that sin 30˚ = 0.5?
Explain.

5. Communication Create a general statement that is true in some cases
but not in all cases. Explain how your statement fits these criteria.

6. Find a counterexample to show that the expression n2 − n + 41 does
not represent a prime number for all positive integers, n.

7. Any polygon can be divided into triangles by joining vertices. 

a) Determine the sum of the angles in polygons with 4, 5, 6,
and n sides.

b) A regular polygon is one that has all sides the same length 
and all angles equal. Determine the measures of the angles 
in regular polygons with 4, 5, 6, and n sides.

8. The diagram at the right was made using The Geometer’s
Sketchpad. On the screen, you can drag P around the circle.
Although the positions of AP and BP change, the measure
of ∠ APB never changes.

a) Does this prove that the angle formed by joining the endpoints
of the diameter of the circle, with any point on the circle, is a
right angle? Explain.

b) Prove that ∠ APB = 90˚. Start the proof by constructing line
segment PO to form two isosceles triangles.

9. Prove the Opposite Angle Theorem
When two lines intersect, the opposite angles are equal. 

10. Prove the Exterior Angle Theorem
Suppose one side of a triangle is extended. Then the exterior angle formed is
equal to the sum of the two interior and opposite angles. 

11. Determine the sum of the shaded angles in each figure.
a) b) c)

State a probable conclusion based on these results. Then prove your conclusion.

P

O BA

m∠ APB = 90.0˚

E

A

B

C

D

B
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12. Application The yin yang symbol consists of a circle
bisected by a curve formed by two semicircles, passing 
through the centre.

a) Show how to draw a curve that bisects both regions, then
prove that it does.

b) Prove that the curve also bisects the perimeters of the regions.

c) Repeat part a, replacing “curve” with “straight line”.

13. Knowledge/Understanding Make a conjecture about the
sum of two even integers. Prove that your conjecture is true.

14. Find a pattern that exists when the square of an odd number
is divided by 4. Make a conjecture and then prove it.

15. Thinking/Inquiry/Problem Solving In �ABC, ∠ A is the largest angle
and ∠ B is the smallest. The sides of the triangle are consecutive natural
numbers greater than 1. Using consecutive numbers 2, 3, and 4, determine 

the ratio sin A
sin C

. Try another case using the numbers 3, 4, and 5. Make a 

conjecture about the ratio. Prove your conjecture.

16. Discuss the validity of the statement: If a natural number is a factor of a
second natural number, then the square of that number is also a factor of
the square of the second number.
If the statement is true, prove it. If the statement is false, find a
counterexample.

17. a) In the diagram below, prove that:
i) ∠ XAB = 2∠ O

ii) ∠ YBC = 3∠ O
iii) ∠ XCD = 4∠ O
iv) ∠ YDE = 5∠ O
v) ∠ XEF = 6∠ O

b) Can this sequence of angles related to ∠ O be continued indefinitely? 
Give two reasons for your answer.

O B D F Y

X

C

E

A

C
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You have been using the Pythagorean Theorem in your mathematics courses 
for many years. The Pythagorean Theorem is so significant that it has probably
been proved in more ways than any other theorem in mathematics. A book
entitled The Pythagorean Proposition contains hundreds of proofs of the
Pythagorean Theorem. In this section, we will examine some of these proofs.

The Pythagorean Theorem is stated in terms of the areas of squares on the sides
of a right triangle. Hence, many proofs of the Pythagorean Theorem illustrate
how the area of the largest square can be divided to form the areas of the two
smaller squares, or vice versa. In the following demonstration, the largest
square is split into two rectangles whose areas are respectively equal to the
areas of the two smaller squares.

Pythagorean Theorem
In a right triangle, the area of the square 
on the hypotenuse is equal to the sum of
the areas of the squares on the other 
two sides.

Proving the Pythagorean Theorem4.2

A

b b2c

c2

c2 = a2 + b2

CB a

a2
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Demonstration using parallelograms
Draw a right triangle and construct squares on each side. Extend the outer 
sides of the two smaller squares to form a rectangle. Draw lines through the
vertices of the triangle, perpendicular to the hypotenuse. The largest square
has been divided into two rectangles. Now show that the areas of the two
smaller squares are equal respectively to the areas of the rectangles. 

When looking at the following sequence of diagrams, keep in mind that
parallelograms with equal bases and equal heights have equal areas.
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At each step, the areas of the coloured regions remain constant. Therefore, the
area of the square on the longer leg is equal to the area of the larger rectangle
inside the square on the hypotenuse. Similarly, the area of the square on the
shorter leg is equal to the area of the smaller rectangle inside the square on the
hypotenuse. Hence, the sum of the areas of the squares on the legs is equal to
the area of the square on the hypotenuse.

The previous demonstration of the Pythagorean Theorem was geometric. Now
we will look at a proof that uses algebra to prove the Pythagorean Theorem. It,
too, involves area.

Demonstration using a square
Start with a right triangle with sides a, b, and c.

Make four copies of this triangle and arrange them to 
form a square with sides a + b.

The triangles enclose an inner figure with side c. To 
prove that this figure is a square, show that one of its
angles is 90˚.

For example, consider ∠ ABD. Because CE is a 
straight line:

B

H F G

a

b

C

b a

c

c
c

A

ba E

b

ac

D

α

αβ

β

A

b

C a

c

B

• How do we know that the vertical line through the right-angled corner
of the right triangle passes through the top vertex of the rectangle
between the two squares?

• Explain each step in the demonstration.

Something to Think About
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∠ CBA + ∠ ABD + ∠ DBE = 180˚
β + ∠ ABD + α = 180˚ ➀

Since α and β are the acute angles of a right triangle:
α + β = 90˚ ➁

Substitute ➁ into ➀ .
90˚ + ∠ ABD = 180˚

Therefore, ∠ ABD = 90˚ and ABDF is a square.

Now find the area of square CEGH in two ways.
Area of CEGH = (a + b)2

Area of CEGH = Area of ABDF + 4(Area of �ABC)

= c2 + 4
(

1
2

ab
)

= c2 + 2ab

The two expressions represent the area of the same figure. Therefore, they
must be equal.

(a + b)2 = c2 + 2ab
a2 + 2ab + b2 = c2 + 2ab

a2 + b2 = c2

Here is a third area proof of the Pythagorean Theorem. This time we make use
of the area property of similar triangles. Recall that for similar triangles, the
ratio of the areas is equal to the square of the ratios of the corresponding sides.

Proof using areas of similar right triangles
Construct any right �ABC with ∠ C = 90˚. Construct
a perpendicular from C to AB and call it CD. There are
now 3 right triangles: �ABC, �ACD, and �CBD. The
angles in these triangles are correspondingly equal, so
the triangles are similar.

BD

a

C

b

A
c

• How do we know that this proves the Pythagorean Theorem for all
right triangles and not just the one in the diagram?

• Notice that we found two different expressions for the area of the
large square, then equated them.

Strategy
Write two
expressions for 
the same thing, 
then equate them.

Something to Think About



According to the area property of similar triangles, the areas of these 
triangles are proportional to the squares of the corresponding sides.

So, Area �ABC
Area �ACD

= c2

b2 and Area �ACD
Area �CBD

= b2

a2

That is, Area �ABC
c2 = Area �ACD

b2 = Area �CBD
a2

This means that there is a constant k such that:

Area of �ABC = kc2

Area of �CBD = ka2

Area of �ACD = kb2

From the diagram,
Area of �ABC = Area of �CBD + Area of �ACD

kc2 = ka2 + kb2

Divide each side by k.

c2 = a2 + b2

In the exercises, you will use similar triangles to prove the Pythagorean
Theorem. This proof does not use area; rather it uses the property that
corresponding sides of similar triangles are proportional.

1. In the diagram at the right, the squares on the legs of right �ABC
have each been divided into 4 triangles.

a) Copy the diagram on a sheet of paper. Cut out the triangles and
arrange them to exactly cover the square on the hypotenuse.

b) Does this demonstrate the Pythagorean Theorem for all right
triangles? Explain.

A

CB

A

Exercises4.2

• Prove that �ABC, �ACD, and �CBD are similar triangles.

Something to Think About

Similar triangles

Student Reference
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2. Explain how the following sequence of diagrams demonstrates the
Pythagorean Theorem.

3. Communication Gemma was asked by her teacher, “What is the
Pythagorean Theorem?” She replied, “It is a2 = b2 + c2 .” Explain
whether her response is correct, giving reasons to support your answer.

4. Knowledge/Understanding Prove the
Pythagorean Theorem using similar triangles
by carrying out the following steps:

Draw right �ABC with ∠ C = 90˚.
From C, draw CD perpendicular to AB.
Segment CD divides AB into two parts.
Let AD = x. Then DB = c − x .

a) Explain why �ABC and �CBD are similar.

b) Write the equal ratios of corresponding sides for the similar triangles in
part a. Use the result to write an equation involving a, c, and x.

c) Explain why �ABC and �ACD are similar.

d) Write the equal ratios of corresponding sides for the similar triangles in
part b. Use the result to write an equation involving b, c, and x.

e) From the equations you obtained in parts b and d, prove that a2 + b2 = c2 .

BD

a

x c – x

C

b

c
A

B
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5. In the diagram at the right, four congruent right triangles are arranged
to form a square with side c. The triangles also enclose a central
square with side b − a.

a) How do you know that the central figure is a square?

b) Prove the Pythagorean Theorem using this figure.

6. In the diagrams below, four congruent right triangles have been
arranged in a square with side a + b in two different ways. Use these
two figures to complete a proof of the Pythagorean Theorem.

7. Application Three cylindrical logs each with radius 10 cm are piled on
a conveyor belt. The logs are strapped together as shown. Determine the
length of strapping required if 8 cm is needed for overlapping.

8. Thinking/Inquiry/Problem Solving In 1876, a future president of the 
United States, James A. Garfield, published a proof of the Pythagorean
Theorem. Two congruent right triangles are arranged as shown in the
diagram at the right, and a trapezoid is completed. The trapezoid also
encloses right �ABE.

a) How do you know that ACDE is a trapezoid?

b) How do you know that �ABE is a right triangle?

c) By finding the area of the trapezoid in two different ways, prove the
Pythagorean Theorem.

A C

B
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a

b
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c

a b

a

b
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a b
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A c
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9. This exercise is a geometric interpretation of exercise 4. 
In the diagram at the right, squares have been constructed 
on the sides of right �ABC. A line is drawn from the 
vertex of the right angle perpendicular to the hypotenuse. 
This line divides the hypotenuse into two parts with lengths 
x and c − x . The line also divides the large square into 
two rectangles.

a) Explain why the area of rectangle I is b2.

b) Explain why the area of rectangle II is a2.

c) Use the results of parts a and b to prove the 
Pythagorean Theorem.

10. Dissection demonstration of the Pythagorean Theorem

Open a new Sketchpad file and perform the following steps:

a) Construct a right triangle in the middle of 
the screen. Label the hypotenuse AB and the
longer leg BC.

b) Construct a square on each side of the
triangle.

c) Locate the centre of square BCED by finding
the intersection of diagonals BE and CD.
Label the point of intersection O. Hide BE
and CD.

d) Through point O, construct:
i) line j perpendicular to the hypotenuse

ii) line m parallel to the hypotenuse

e) Lines j and m divide the square into four
parts. Construct the points where j and m
intersect the sides of BCED. Hide j and m.

f) For each of the four parts of square BCED,
select the vertices in order and construct the 
polygon interior. Then construct the polygon interior of ACFG.

g) Select the five polygon interiors. Cut and paste them. This frees the
interiors so that they can be moved around on the screen. Click on a
blank area of the screen to deselect everything.

h) Arrange the five pieces to exactly cover the square ABIH on the
hypotenuse. Explain how this demonstrates the Pythagorean Theorem.

A

G

B

j

O

H

m

I

C

E

D

F

ab

A B

C

x c – x

I

II

I II
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11. ABCD is a square with sides 6 cm long. If AM and AN divide the square into
three regions with equal areas, find the lengths of AM and AN.

12. Square ceramic tiles are made with the pattern shown below. The tiles have a
symmetrically located square in the middle. Express y as a function of x if:

a) all five figures have the same area

b) all interior segments have the same length

x

y

C

M

N

A B

D C
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One of the most useful problem-solving strategies in geometry is credited to
two great French mathematicians of the seventeenth century, René Descartes
(1596–1650) and Pierre de Fermat (1601–1665). Their idea was to place a
coordinate system on a geometric figure and then use algebra to prove
geometric results. 

We will use their method to prove the following property of a triangle.

Proof using coordinates
Draw any �ABC. Mark the midpoints, D and E, of AB and AC, respectively. 
We must prove that DE ‖ BC and DE = 1

2
BC.

Draw coordinate axes on the figure, as follows.
Let B be the origin. Draw the x-axis along side BC.

Side-Splitting Theorem
The line segment joining the midpoints of two sides 
of a triangle is parallel to the third side and one-half 
as long as the third side.

DE ‖ BC and

DE = 1
2

BC

Coordinate Proofs4.3

A

ED

B C
Draw the y-axis through B perpendicular to BC.

Let the coordinates of the vertices of �ABC be A(a, b), B(0, 0), C(c, 0).

Since D is the midpoint of AB, D has coordinates 
(

a + 0
2

, b + 0
2

)
or D

(
a
2

, b
2

)
.

Since E is the midpoint of AC, E has coordinates 
(

a + c
2

, b + 0
2

)
or E

(
a + c

2
, b

2

)
.

A(a, b)

ED

B(0, 0) C(c, 0)

y

x
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To prove that DE ‖ BC, show that their slopes 
are equal.

Slope DE =
b
2 − b

2
a +c

2 − a
2

= 0

Since BC lies on the x-axis, the slope of BC is 0.
Therefore, DE ‖ BC.

To prove that DE = 1
2

BC, calculate their lengths 

using the distance formula.

DE =
√(

a + c
2

− a
2

)2
+

(
b
2

− b
2

)2

= c
2

BC =
√

(c − 0)2 + (0 − 0)2

= c

Hence, DE = 1
2

BC.

Since DE ‖ BC and DE = 1
2

BC, the line segment joining
the midpoints of two sides of a triangle is parallel to the 
third side and one-half as long as the third side.

An important part of a coordinate proof is to make a good choice of axes and
coordinates. When placing a system of coordinates on a figure, we are free to
choose:

• any convenient point to be the origin

• any line through the origin to be the x-axis (or y-axis)

• Why does the proof of the side-splitting theorem apply to all triangles,
not just those with one vertex at the origin and one side along the 
x-axis?

• In the proof of the side-splitting theorem, the axes were placed to
coincide as much as possible with parts of the triangle. Why? What
other positions might be good choices for the origin and the axes?

• Let the vertices of �ABC be A(2a, 2b), B(0, 0), and C(2c, 0), and
follow the same steps as in the proof above. What is the advantage 
of using the 2 in the coordinates of A and C? How would you know 
in advance that using a 2 in the coordinates of A and C might simplify
the proof?

Something to Think About
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Euclid 
(c. 325–265 BC)
Born: Greece

Euclid is considered the father 
of geometry. His famous work,
Elements, is a compilation of the
mathematics and geometry known
at the time. It was used as a
textbook of geometry right up to
the early 20th century. Although 
the definitions and postulates are
not Euclid’s original work, Elements
was highly regarded for the clarity
with which the theorems are stated
and proved.
It is believed that Euclid founded 
the school of mathematics at the
university in Alexandria, Egypt, 
and may have been a mentor to
Archimedes.

Photo not
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copyright
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Some theorems of plane geometry can be easily proved using coordinates.
To construct these proofs, we use results of coordinate geometry learned 
in earlier years such as those related to distance, midpoint, and slope. For
example, to prove the following theorem, we use the property that the product
of the slopes of perpendicular line segments is −1.

Proof using coordinates
Draw a circle with diameter AB. Let P be any point on the circle. Prove that
∠ APB = 90˚.

Draw coordinate axes on the figure. Let the centre of the circle be the origin.
Let the x-axis coincide with diameter AB. Draw the y-axis through the centre
perpendicular to AB.

Semicircle Theorem
If P is any point on a semicircle with 
diameter AB, then ∠ APB = 90˚.

Diagram Good choice of axes and coordinates

A B

D C

P

Q R

P(0, b)

Q(–a, 0) R(a, 0)

Any circle

Any rectangle

Any isosceles triangle

A(0, 0) B(a, 0)
x

x

y

y

D(0, b) C(a, b)

x

y

(r, 0)

x2 + y2 = r 
2

O
BA

P



Let the radius of the circle be r. Then the coordinates of the endpoints of the
diameter AB are A(−r, 0) and B(r, 0). The equation of the circle is x2 + y2 = r2.

Let the coordinates of P be (a, b).

To prove that ∠ APB = 90˚, show that AP ⊥ BP, that is,
(slope AP) × (slope BP) = −1.

(slope AP) × (slope BP) = b
a + r

× b
a − r

= b2

a2 − r2

Since P lies on the circle, its coordinates must satisfy the equation x2 + y2 = r2.
Thus, a2 + b2 = r2, or a2 − r2 = −b2.
Substitute a2 − r2 = −b2 in the expression above.

So, (slope AP) × (slope BP) = b2

−b2

= −1
Hence, ∠ APB = 90˚

1. Which of the two choices of axes is better? Explain.
a) i) ii) b) i) ii) y

x

y

x

y

x

y

x

A

Exercises4.3

• Why does this proof apply to all circles, not just circles with centre (0, 0)?

Something to Think About

0 B(r, 0)A(–r, 0)

P(a, b)

x2 + y2 = r 
2

y

x
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c) i) ii) d) i) ii)

2. Supply the missing variables for each figure without introducing any new
coordinates.

a) ABCD is a rectangle. b) ABCD is a parallelogram.

c) ABCD is a rhombus. d) �ABC is equilateral.

3. Communication A student gave this “proof” of the 
Pythagorean Theorem. Let �ABC have vertices A(a, 0),
B(0, b), and C(0, 0). Then, according to the distance
formula, AB =

√
(0 − a)2 + (b − 0)2 =

√
a2 + b2 . Square

both sides to obtain AB2 = a2 + b2. Therefore,
c2 = a2 + b2 . Explain why this “proof” is not correct.

4. Knowledge/Understanding Use the diagram below left.
Prove that the diagonals of a square are perpendicular.

y

x

C(a, a)D(0, a)

B(a, 0)A(0, 0)

y

x
A(2a, 0)

B(0, 2b)

C(0, 0)

M

y

x
A(a, 0)

B(0, b)

C(0, 0)

y

x

C(?, ?)

B(a, 0)A(–a, 0)

y

x

C(?, ?)

B(?, 0)

D(m, n)

A(0, 0)

y

x

C(?, ?)

B(a, 0)

D(c, b)

A(0, 0)

y

x

D(–a, b) C(?, ?)

A(?, ?) B(?, ?)

B

y

x

y

x

y

x

y

x
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5. Use the diagram at the lower right of the previous page. Prove that the
midpoint of the hypotenuse of a right triangle is equidistant from the 
three vertices.

6. In the diagram at the right, OB = BC and AD = DB. Prove
that the area of �DOB is one-quarter the area of �AOC by
completing the following steps.

a) Label point C as (2a, 0) and point A as (2b, 2c).

b) Find the coordinates of B and D.

c) Find the areas of �DOB and �AOC and compare results.

7. Point P is any point on the perpendicular bisector of a line
segment AB. Prove that PA = PB.

8. In quadrilateral ABCD, AB = DC and AB ‖ DC.
Prove that AD = BC and AD ‖ BC.

9. Prove that the perpendicular bisector of a chord of a circle passes through
the centre of the circle by completing the following steps.

a) Draw a circle with centre at the origin. Draw a horizontal chord AB in the
circle, above the x-axis.

b) Write expressions for the coordinates of the endpoints of the chord AB.

c) Let M be the midpoint of AB. Write the coordinates of M.

d) Identify the perpendicular bisector of AB.

e) Explain why the perpendicular bisector of AB passes through the centre
of the circle.

f) Explain why the proof applies to all chords in all circles.

A B

D C
y

x
(0, 0)

P

A B

A

BO C

D

y

x
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10. Prove that the diagonals of a parallelogram bisect each other.

11. M and N are the midpoints of the equal sides of an isosceles triangle.
Prove that the medians to M and N are equal in length.

12. Application Prove that if the diagonals of a parallelogram are equal, then
the parallelogram is a rectangle.

13. Prove that any point P(a, b) on the parabola y2 = 4px is equidistant from 
the point F(p, 0) and the line x + p = 0.

14. The diagonals of a quadrilateral bisect each other at right angles. What 
kind of quadrilateral is it? Use coordinates to prove your answer.

15. Thinking/Inquiry/Problem Solving In the diagram, ABCD is a square.
M is the midpoint of DC, and AN ⊥ MB. Prove that DN = DA.

16. In �ABC, ∠ B = 90˚. A square is drawn on the hypotenuse 
AC and P is the centre of the square. Prove that ∠ PBC = 45˚.

17. In exercise 15, visualize how the diagram changes if side BC 
moves to the left or the right, forming a rectangle ABCD.

a) Prove that DN = DA.

b) Calculate the ratio of the length to the width of the rectangle 
such that �DAN is equilateral.

C
A

P

CB

A B

D M

N

C
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Vectors provide another powerful method for proving certain geometric
properties. Since vectors have both magnitude and direction, a statement that
two vectors are equal or are scalar multiples of each other gives two facts about
the corresponding line segments. Thus vectors are efficient for solving problems
in geometry involving parallel line segments.

Recall that in Section 4.3, page 235, we proved the Side-Splitting Theorem

Vector statement
Equivalent geometric

statements

A

C

B

D

R

S

R

S

P

Q

PQ ‖ RS
PQ = 2RSP

Q

A

C

B

D

AB ‖ CD
AB = CDAB = CD

PQ = 2RS

Vector Proofs Using the Addition Law4.4
242 CHAPTER 4 EXAMPLES OF PROOF

using coordinates. Now we give two different vector proofs of this theorem.

The two statements to be proved are equivalent to the single vector statement −⇀
DE = 1

2

−⇀
BC.

Side-Splitting Theorem
The line segment joining the midpoints of two 
sides of a triangle is parallel to the third side 
and one-half as long as the third side.

DE ‖ BC and

DE = 1
2

BC

A

CB

D E
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Proof using vectors
Consider vector 

−⇀
DE. To get from D to E, go from D to A to E.

−⇀
DE =

−⇀
DA +

−⇀
AE ➀

Alternatively, to get from D to E, go from D to B to C to E.
−⇀
DE =

−⇀
DB +

−⇀
BC +

−⇀
CE ➁

Add ➀ and ➁ .

2
−⇀
DE =

−⇀
DA +

−⇀
AE +

−⇀
DB +

−⇀
BC +

−⇀
CE

= (
−⇀
DA +

−⇀
DB) + (

−⇀
AE +

−⇀
CE) +

−⇀
BC

=
−⇀
0 +

−⇀
0 +

−⇀
BC

=
−⇀
BC

Hence,
−⇀
DE = 1

2

−⇀
BC

Therefore, DE = 1
2

BC and DE ‖ BC.

In the above proof, the two figures used were �DAE and quadrilateral DBCE.
We can give a different proof using the overlapping triangles, �DAE and
�BAC.

Alternate proof
−⇀
DE =

−⇀
DA +

−⇀
AE

= 1
2

−⇀
BA + 1

2

−⇀
AC

= 1
2

(−⇀
BA +

−⇀
AC

)

= 1
2

−⇀
BC

Therefore, DE = 1
2

BC and DE ‖ BC.

• Why do 
−⇀
DA +

−⇀
DB and 

−⇀
AE +

−⇀
CE equal 

−⇀
0 ?

• Notice that we used the law of addition twice—by going from 
D to A to E in �DAE, and by going from D to B to C to E in
quadrilateral DBCE.

Strategy
Look for two
different figures
where the addition
law of vectors can
be used twice.

Something to Think About

A

ED

B C



1. In the diagram below, AB = DC and AB ‖ DC. Prove that DA = CB and
DA ‖ CB by completing the following steps.

a) Draw the diagram and join DB.

b) It is given that AB = DC and AB ‖ DC. Write a single vector statement
that is equivalent to these two statements.

c) Use the triangle law to write two different expressions for the vector 
−⇀
DB.

d) From the results of part c, deduce that 
−⇀
DA =

−⇀
CB.

e) Explain why DA = CB and DA ‖ CB.

2. In the diagram below, AO = OB and DO = OC.
Prove that AC = DB and AC ‖ DB.

A
D

C
B

O

A B

CD

A

Exercises4.4

• Where was the addition law used twice?

• Vector proofs are often relatively short. What is the reason for this?

Something to Think About
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3. In parallelogram ABCD (below left), M and N are the midpoints of AB
and DC, respectively. Prove that DM = NB and DM ‖ NB.

4. Knowledge/Understanding In parallelogram ABCD (above right), points
P and Q trisect the diagonal AC. Prove that DPBQ is a parallelogram.

5. Communication If 
−⇀
AB +

−⇀
BD =

−⇀
BC, what type of quadrilateral is

represented by ABCD? Explain how you know.

6. Use vectors to prove that if the diagonals of a quadrilateral bisect each other,
the quadrilateral is a parallelogram. 

7. Application Prove that the midpoints of the sides of a quadrilateral are the
vertices of a parallelogram.

8. In �ABC (below left), points D and F trisect AB and points E and G
trisect AC. Prove that:

a) DE ‖ BC and DE = 1
3

BC

b) FG ‖ BC and FG = 2
3

BC

9. In trapezoid PQRS (above right), SR ‖ PQ, and SR = 3PQ. The midpoints
of PS and QR are M and N, respectively. Prove that MN ‖ PQ and 
MN = 2PQ.

B C S R

NM
E

A P Q

D

F G

A M B

D N C D C

A

Q

P

B

B



10. In the diagram below left, AB ‖ DE, AB = DE, and C is the midpoint of
BD. Prove that A, C, and E are collinear, and that AC = CE.

11. In parallelogram PQRS (above right), T is the midpoint of the diagonal QS.
Prove that T is also the midpoint of diagonal PR.

12. Thinking/Inquiry/Problem Solving Refer to exercise 9. Suppose
everything remains the same, but the condition SR = 3PQ is removed. 
Find out as much as you can about how segment MN is related to 
segment PQ. Use vectors to prove your results.

13. In a regular hexagon ABCDEF, prove that:

3
−⇀
AD =

−⇀
AB +

−⇀
AC +

−⇀
AD +

−⇀
AE +

−⇀
AF

C

A S R

PE

B D
C

T

Q
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Review Exercises

Derivative Tools
Mathematics Toolkit

There is a difference between conjecture and proof. A conjecture is a
general statement based on an observed pattern. To prove such a statement
is to prove it true for all cases, not just those considered when making the
conjecture.

One counterexample is sufficient to prove a statement false.

Problem solving strategies to apply in proofs:
• Construct an appropriate line or line segment on a diagram.

• Write two expressions for the same thing, then equate them.

• Look for two different figures where the addition law of vectors can 
be used twice.

Coordinate Proofs
When using coordinate proofs, draw the figure and place coordinate 
axes strategically.

Diagram Good choice of axes and coordinates

y

REVIEW EXERCISES 247

A B

D C

P

Q R

P(0, b)

Q(–a, 0) R(a, 0)

Any circle

Any rectangle

Any isosceles triangle

A(0, 0) B(a, 0)
x

x

y
D(0, b) C(a, b)

x

y

(r, 0)

x2 + y2 = r 
2
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1. In 1742, German mathematician Christian Goldbach conjectured that every
even number greater than 2 is the sum of two prime numbers (for example,
18 = 13 + 5). No one has been able to prove that this is true for all even
numbers, and no one has ever found a counterexample. This problem is
known as Goldbach’s Conjecture. It is a famous unsolved problem in
mathematics.

a) Choose three other even numbers. Verify that each number can be written
as the sum of two primes.

b) To obtain a counterexample, what would you have to find?

2. Make a conjecture about the value of the expression sin2 θ + cos2 θ as θ
takes on various values. Prove your conjecture.

3. Find the sum of the shaded angles. State a general result suggested by these
diagrams; then prove it.

a) b)

4. Make a conjecture about the product of two consecutive natural numbers.
Prove your conjecture.

5. Given 3 points (k, 3k),
(

1
3k

, 1
k

)
, and (3k, 9k) in a plane, investigate this 

set of points for different values of k. Make a conjecture about the three
points. Prove your conjecture.

6. Prove the Pythagorean Theorem.

Vector Proofs 
• When two vectors are equal, the line segments joining their endpoints are 

parallel and equal in length.

• Apply the addition law twice, where possible, to obtain a statement of equality
involving vectors.
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7. In the diagram at the right, the radius of the circle is x cm.
Determine expressions for the side lengths of both equilateral
triangles.

Use coordinate geometry to prove the following:

8. Prove that the perpendicular drawn from the centre of a circle
to any chord bisects the chord.

9. In any triangle ABC, if AD is the median from A to BC, prove that:
AB2 + AC2 = 2BD2 + 2AD2

10. In the diagram at the right, ABCD is an isosceles trapezoid.
DC ‖ AB and AP = QB. Prove that the slopes of the
diagonals of the trapezoid are opposites.

11. In �PQR, A, B, and C are the midpoints of the sides PQ, QR, and PR,

respectively. Prove that 
−⇀
PB +

−⇀
QC −

−⇀
AR =

−⇀
O .

12. Prove that if the diagonals of a quadrilateral bisect each other, then the
quadrilateral is a parallelogram.

13. ABCD is a parallelogram. Prove that 
−⇀
AB +

−⇀
CB =

−⇀
DB.

14. Prove that the median drawn from the vertex of an isosceles triangle to 
the base is perpendicular to the base.

15. In the quadrilateral ABCD, the midpoints of the sides AB, BC, CD, and DA
are P, Q, R, and S, respectively. Prove that PR and QS bisect each other.

16. PQRS is a trapezoid with PQ ‖ RS. Prove that 
−⇀
PS +

−⇀
RQ =

−⇀
PQ +

−⇀
RS.

A P Q B

CD
y

x



1. Communication State whether the following statements are true or false.
If they are false, give a counterexample.

a) Two rectangles have the same area. Therefore, they have the same length
and width.

b) If two lines are not parallel, then the two lines will meet in a single point.

c) If a quadrilateral has four equal sides, then the quadrilateral is a square.

2. Prove that the difference of the squares of any two odd natural numbers is
divisible by 4.

3. Knowledge/Understanding Prove, using coordinates, that if the midpoints
of the sides of a rectangle are joined, the quadrilateral formed is a rhombus.

4. Application In the diagram at right, an equilateral triangle and 
a square have a common base x units long. Determine the percent 
of the area of the square that is covered by the area of the triangle.

5. In parallelogram ABCD, AB ‖ DC and AD ‖ BC. Prove that:

BD2 + AC2 = AD2 + DC2 + BC2 + AB2

6. Thinking/Inquiry/Problem Solving In the quadrilateral ABCD shown

below, points E, F, G, and H are the midpoints of AB, AC, DC, and DB,

respectively. Prove that EFGH is a parallelogram.

Self-Test
A B

C

D

G

F
H

E

250 CHAPTER 4 EXAMPLES OF PROOF



Performance Problems
for Proof

Photo not available due
to copyright issues.
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The problems in this section offer you the opportunity to solve some complex
problems related to the topics you have studied. Some of these problems are
challenging. You may find it helpful to work with others, to share ideas and
strategies. You may be unable to complete a solution to some of the problems at 
the first attempt. Be prepared to research, to return to a problem again and again.

Curriculum Expectations
By the end of this section you will:

• Solve complex problems and present the
solutions with clarity and justification.

• Solve problems of significance, working
independently, as individuals and in
small groups.

• Solve problems requiring effort over
extended periods of time.

• Demonstrate significant learning and 
the effective use of skills in tasks such
as solving challenging problems,
researching problems, applying
mathematics, creating proofs, using
technology effectively, and presenting
course topics or extensions of course
topics.
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Focus on … Areas of Curved Regions

In ancient Greece, about 440 B.C., Hippocrates of Chios found 
a way to calculate the areas of certain regions enclosed by circular
arcs. These regions are called lunes. At that time, it was a very
significant discovery that the area of a region bounded by curves
could be calculated exactly, and that it could have the same area
as a region bounded by straight lines.

The two problems below are similar to the problems Hippocrates
solved. You can use some formulas to find expressions for the
areas of certain figures and combine them algebraically to solve
the problems. However, there is an easier and more elegant way 
to solve the second problem that involves little or no calculation. 
Try to solve this problem both ways.

Problem 1
Right �AOB has legs of length r and a right angle at O. A quarter circle 
is constructed with centre O and radius r. A semicircle is constructed with
diameter AB. Prove that the area of the shaded lune is equal to the area of
�AOB.

Problem 2
C is any point on a circle with diameter AB. 
On sides AC and BC of �ABC, semicircles
are drawn outside the triangle. Prove that the
total area of the two shaded lunes is equal to
the area of �ABC.

Focus on … The Altitude to the Hypotenuse

There are several interesting patterns involving the altitude to the hypotenuse 
in a right triangle. You will discover these patterns in the problems below.

Problem 3
In �ABC, ∠ C = 90˚. The lengths of AC and CB are 
3 units and 4 units, respectively. Calculate the length,
h, of the altitude CN.

4

3

C

N

h

B

A

A

C

B

O

A

B
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Problem 4
In problem 3, suppose the lengths of BC, CA, and AB are a, b, and c, respectively.
Write an expression for h in terms of a, b, and c. Prove that your expression is correct.

Problem 5
Some proofs of the Pythagorean Theorem were given in Section 4.2. You can
prove the Pythagorean Theorem yourself using similar triangles.

In the diagram at the right, altitude CN divides �ABC into two 
right triangles. 

a) Prove that all three right triangles in the diagram are similar.

b) Use the results of part a to prove that:
i) a2 = cy ii) b2 = cx iii) h2 = xy

c) Prove that c2 = a2 + b2 .

Problem 6
Suppose C lies on a semicircle with diameter AB = 10 cm. 
Visualize C moving along the semicircle. As it moves, the
lengths of a, b, h, x, and y change.

a) Determine the value(s) of x such that the triangle with
side lengths a, b, and h is a right triangle.

b) Determine the value(s) of x such that the triangle with
side lengths h, x, and y is a right triangle.

c) How do the triangles you found in parts a and b compare with �ABC? Explain.

Problem 7
There are six variables on the diagram (top right): a, b, c, h, x, and y. Suppose
you know the values of some of these variables. How many values would you
need to know so that you could calculate the values of all the other variables?
Support your answer with some numerical examples.

Challenge Problem 8
In problem 5b, there are 3 equations relating the variables. Three other equations
result from applying the Pythagorean Theorem to the three right triangles. The
equation c = x + y is obvious from the diagram, and so is the equation h = ab

c
from problem 4. Together, these equations form a non-linear system of 8
equations in 6 variables. How many of these equations are independent? What is
the least number of equations needed to derive the other equations?

ab
h

10 cm
A B

C

N
x y

A

b
h

a

x y

c
BN

C



Focus on … The Pythagorean Diagram

The Pythagorean diagram has many interesting properties.

Problem 9
In the Pythagorean diagram, there are spaces between 
the squares on the three sides. We can draw a rectangle
and two parallelograms to fill in these spaces, as shown.
This diagram has many interesting properties.

Prove each property.

a) The areas of the rectangle and the two parallelograms
are all equal.

b) The centres of the squares on the three sides are the
midpoints of the sides of �LMN.

c) The area of �LMN is (a + b)2.

d) The area of �LMN is never less than 8 times the area
of �ABC.

Problem 10
Points P, Q, and R are the centres of the squares on the three sides 
of right �ABC. 

a) Prove that PC ⊥ QR and PC = QR. The first result proves that
PC is an altitude of �PQR.

b) Prove that: i) QA ⊥ RP and QA = RP

ii) RB ⊥ PQ and RB = PQ

The first part of each result proves that the altitudes of �PQR
through Q and R pass through A and B, respectively.

c) Prove that the altitudes of �PQR intersect at the same point.

Problem 11
Use The Geometer’s Sketchpad to construct the diagram in problem 10. Points
A and B must be free to move along vertical and horizontal lines so that ∠ C
is always 90˚. Drag points A and B and observe how �PQR changes.

a) Is it possible for �PQR to be a right triangle? an isosceles triangle? an
equilateral triangle? If so, what kind of triangle is �ABC, and how are 
the two triangles related in these situations?

A

C

R

B

Q

P

N

C B M

A

R

L

b
c

a

Q

P
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b) Use the Calculate command to calculate the areas of the two triangles,
and their ratio. Describe how the area of �PQR compares with the area 
of �ABC as you drag point A or B.

c) Describe any interesting results that you discovered. Explain 
why these results have only been illustrated and not proved.

d) Prove one of the results you discovered in part c.

Problem 12
In problem 10, it is not necessary for �ABC to be a right triangle. 
P, Q, and R are the centres of the squares on the sides of any �ABC.
Use The Geometer’s Sketchpad to construct the diagram at the right.
Construct �PQR. Drag point A to different positions on the screen. 
Find out as much as you can about the two triangles. For example,
what happens when �ABC is equilateral? What happens if A, B,
and C are collinear? Do the areas of the two triangles compare in 
the same way as when �ABC is a right triangle? Describe any 
interesting results you discovered. Prove one of these results.

Problem 13
Squares are constructed on the sides of any quadrilateral ABCD. 
Points P, Q, R, and S are the centres of the squares.

a) Prove that RP ⊥ SQ and RP = SQ. That is, the line 
segments joining the centres of squares opposite each 
other are perpendicular and equal in length.

b) Explain why the property of triangles in problem 12 is 
a special case of the property in part a.

Problem 14
Use The Geometer’s Sketchpad to construct the diagram in problem 13. Construct
quadrilateral PQRS. Drag points A and B to different positions on the screen. Find
out as much as you can about the two segments and the two quadrilaterals. For
example, what happens when ABCD is a parallelogram? What happens if two or
more of the points A, B, C, and D are collinear? Describe any interesting results
you discovered. Prove one or more of these results.

Challenge Problem 15
In the previous problems, you discovered several properties of the Pythagorean
diagram, or diagrams related to the Pythagorean diagram. Find some other
properties like these. Prove any properties you discover.

S

P

A
B

CD

R

Q

C

R

P

Q

A

B



Focus on … Vector Proofs Using the Dot Product

We can use properties of dot products to prove geometrical results using vectors.
These results involve angles or perpendicularity.

• To prove that two line segments are perpendicular, show that a certain dot
product equals 0.

• To prove that two angles are equal, work with the dot products of the vectors
that form those angles.

• To work with lengths, use the property −⇀a • −⇀a =
∣∣−⇀a ∣∣2

.

�ABC is an isosceles triangle in which AB = AC.
Prove that the median AM is perpendicular to BC.

Proof

Let −⇀u =
−⇀
AB and −⇀v =

−⇀
AC.

Since 
∣∣−⇀u ∣∣ =

∣∣−⇀v ∣∣, then −⇀u • −⇀u = −⇀v • −⇀v
−⇀
CB = −⇀u − −⇀v
−⇀
AM =

−⇀
AC +

−⇀
CM

= −⇀v + 0.5(−⇀u − −⇀v )

= 0.5(−⇀u + −⇀v )

−⇀
AM •

−⇀
CB = 0.5(−⇀u + −⇀v ) • (−⇀u − −⇀v )

= 0.5(−⇀u • −⇀u − −⇀v • −⇀v )
= 0

Therefore, the median AM is perpendicular to BC.

Notice the strategy that was used in the example.

• Represent two sides with vectors −⇀u and −⇀v .

• Express other side(s) in terms of −⇀u and −⇀v .

• Combine the expressions algebraically in an 
appropriate way to solve the problem, making 
sure to use the given information.

Give vector proofs for the next three problems.

B C

A

M

⇀u ⇀v

⇀u − ⇀v

⇀u ⇀v

Example
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Emilie du Châtelet (1706–1749)
Born: Paris, France

Du Châtelet was provided with 
a good education and excelled 
in languages. However, her true
passion was mathematics. She
developed a close friendship with
Voltaire and the two devoted much
time studying the work of Leibniz
and Newton. Her major work was 
a translation of Newton’s Principia
into French.
Du Châtelet was very active in the
social life of the French court, and
throughout her life maintained her
position in Paris society.



Problem 16
Prove the Semicircle Theorem.

Problem 17
�ABC is an isosceles triangle in which M is the midpoint of BC. Prove that 
M lies on the bisector of ∠ A.

Problem 18
Prove the Isosceles Triangle Theorem: In an isosceles triangle, the angles
opposite the equal sides are equal.

Other Problems

Problem 19
�ABC is an isosceles triangle in which AB = AC. Points D and E are the
midpoints of sides AB and AC, respectively. Prove that the medians BD 
and CE are equal in length.

Problem 20
Prove that the sum of the squares of the diagonals of a parallelogram equals 
the sum of the squares of its sides.

Problem 21
Prove that the midpoint of the hypotenuse of a right triangle is equidistant 
from the three vertices.

Problem 22
Points P, Q, R, and S are the midpoints of the sides of square ABCD. Prove
that the area of the shaded square is one-fifth the area of square ABCD.

Problem 23
There are three different ways to draw two overlapping 
congruent right triangles standing on a common side.
Which of the three shaded triangles has the greatest area?

R

PB C

DA

S Q
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Problem 24
In �AOB (below left), H is the point of intersection of the altitudes from 

A and B. Let −⇀a =
−⇀
OA,

−⇀
b =

−⇀
OB, and 

−⇀
h =

−⇀
OH.

a) Prove that −⇀a • (
−⇀
b −

−⇀
h ) = 0.

b) Prove that 
−⇀
b • (−⇀a −

−⇀
h ) = 0

c) Using the results of parts a and b, prove that 
−⇀
h • (

−⇀
b − −⇀a ) = 0. 

Explain the geometrical significance of the result.

Challenge Problem 25
In �AOB (above right), Q is the point of intersection of the perpendicular 

bisectors of OA and OB. Let −⇀a =
−⇀
OA,

−⇀
b =

−⇀
OB, and −⇀q =

−⇀
OQ.

a) Prove that −⇀a •
(−⇀q − 1

2
−⇀a

)
= 0.

b) Prove that 
−⇀
b •

(−⇀q − 1
2

−⇀
b

)
= 0.

c) Let F be the midpoint of AB. Using the results of parts a and b, prove that QF
is perpendicular to AB. Explain the geometrical significance of this result.

Challenge Problem 26

Vectors −⇀a and 
−⇀
b are drawn tail-to-tail. Vector −⇀c is the reflection of −⇀a in the

line containing vector 
−⇀
b . Express −⇀c as a linear combination of −⇀a and 

−⇀
b .

A

BO

E Q
F

D

A

H

B

O
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Deductive Reasoning 5
Curriculum Expectations
By the end of this chapter, you will:

• Demonstrate an understanding of the
principles of deductive proof.

• Prove some properties of plane figures,
using deduction.

• Prove some properties of plane figures,
using indirect methods.

• Generate multiple solutions to the same
problem.

• Solve problems by effectively
combining a variety of problem-solving
strategies.

Photo not available due
to copyright issues.



In Chapter 4, we used a variety of methods to prove some properties of plane
figures.

Angle Sum Theorem In Section 4.1, we used rotations to prove that the 
sum of the angles in a triangle is 180˚. We also proved this theorem using 
the alternate-angle property of parallel lines.

Pythagorean Theorem In Section 4.2, we proved the Pythagorean Theorem 
by forming a square from four right triangles and the square on the hypotenuse. 
We also used similar triangles to prove that a2 + b2 = c2 , where a, b, and c are 
the lengths of the sides of a right triangle.

Side-Splitting Theorem In Section 4.3, we used coordinate geometry to
prove that the line segment joining the midpoints of two sides of a triangle is
parallel to the third side and half as long as that side. We gave an alternate
proof of this theorem using vectors in Section 4.4.

These results were proved using deductive reasoning. In each case, we began
with statements or properties that we accepted as true, and through logical
reasoning, arrived at a conclusion. If we apply the principles of deductive
reasoning correctly, we can be certain the conclusions we draw are true. 

It is customary to reserve the term deductive proof for a method 
of proof developed by Euclid and other Greek mathematicians 
over 2000 years ago. This method involves starting with a set 

Some Axioms
An axiom is considered
so obvious that it is
accepted as being true

Deductive Proof5.1
of basic assumptions, called axioms, and logically proving
conclusions from them. Any of the conclusions reached can then
be used to prove other results. Conclusions that are most useful
for proving further results are called theorems. The theorems are
arranged in a logical sequence where the proof of each one
depends on theorems already proved.

Some examples of axioms are listed at the right. Other axioms
involve congruent triangles.

without being proved.

• Things that are equal
to the same thing are
equal to each other.

• If equals are added 
to equals, the sums are
equal.

• Only one line can be
drawn through two
distinct points.

• There is only one line
that bisects a given
angle.

• Two distinct lines 
that intersect do so 
in exactly one point.
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We can use deductive reasoning to prove an important theorem about isosceles
triangles.

Proof using congruent triangles
In the diagram at the right, �ABC represents any isosceles 
triangle in which AB = AC. We must prove that ∠ B = ∠ C.

Draw a line through A which bisects ∠ A and meets BC at D. 

We are given that AB = AC. Since AD is a common side, and
∠ BAD = ∠ CAD, we can conclude that �BAD ≅ �CAD by 
SAS. It follows that ∠ B = ∠ C since these are corresponding 
angles of the congruent triangles.

A

B D C

Isosceles Triangle Theorem
In an isosceles triangle, the angles opposite the equal 
sides are equal.

If AB = AC, then ∠ B = ∠ C.

SSS Congruence Axiom
If three sides of one triangle are equal to 
three sides of another triangle, then the 
triangles are congruent.

SAS Congruence Axiom
If two sides and the contained angle of one 
triangle are equal to two sides and the 
contained angle of another triangle, then 
the triangles are congruent.

ASA Congruence Axiom
If two angles and the contained side of one 
triangle are equal to two angles and the 
contained side of another triangle, then the 
triangles are congruent.
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In Chapter 4, we used both coordinate geometry and vectors to prove the
Semicircle Theorem. We can use the Isosceles Triangle Theorem to give a 
third proof of the Semicircle Theorem. 

Deductive proof of Semicircle Theorem
Construct a circle with centre O. Draw a diameter 
AB. Mark any point P on the circle. Join AP and PB.
We must prove that ∠ APB = 90˚.

Join OP. Since OA and OP are radii of the circle, they
have the same length. Hence, �OAP is isosceles. By
the Isosceles Triangle Theorem, ∠ OAP = ∠ OPA. Let x
degrees represent the measures of these angles. Similarly,
�OBP is isosceles and ∠ OBP = �OPB. Let y degrees 
represent the measures of these angles.

By the Angle Sum Theorem, the sum of the angles 
in �ABP is 180˚. Hence,

x + y + (x + y) = 180˚
2x + 2y = 180˚

x + y = 90˚

From the diagram, ∠ APB = x + y
Therefore, ∠ APB = 90˚

It can be difficult to construct a set of axioms and prove geometric theorems
from them in a logical sequence using deductive reasoning. Ideally, the number
of axioms should be kept to a minimum. This means that considerable effort
would be required to prove conclusions that may appear to be obvious. We 
will not attempt to do this in this book.

x

x y

y
A O B

P

• Notice that the strategy of drawing a line segment is the key to proving
the theorem this way. This line segment is the bisector of ∠ A.

• Could we have proved the theorem by constructing the altitude from A
to BC instead of the angle bisector? Explain.

• Could we have proved the theorem by constructing the median from A
to BC instead of the angle bisector? Explain.

• What does “congruent” mean? What does the symbol ≅ mean?

Something to Think About
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1. Explain the difference between an axiom and a theorem.

2. AB and CD are chords of equal length in a circle with centre O (below left).
Prove that ∠ AOB = ∠ COD.

3. In the diagram (above right), ∠ B = ∠ E and BC = EC. Prove that AB = DE
and ∠ A = ∠ D.

4. a) If one of the angles in an isosceles triangle is 60˚, what are the measures 
of the two other angles? Give a clearly worded and convincing explanation 
of your answer.

b) In general, if one of the angles in an isosceles triangle is x˚, what are the
other two angles?

5. Knowledge/Understanding Use the Isosceles Triangle Theorem to prove
that an equilateral triangle is equiangular.

6. Explain the difference between inductive reasoning and deductive reasoning.
How are they similar? How are they different?

7. The SAS congruence axiom requires that the angle be contained by the 
two sides. Draw a diagram of two triangles to show why SSA is not a
congruence axiom.

8. One special case of SSA occurs when the angle is a right angle. Explain
why the following theorem is true.

Hypotenuse-Side Theorem 
If the hypotenuse and one other side of a right triangle are equal to the
hypotenuse and one side of another right triangle, then the triangles are
congruent.

B

B A

O

C

C

B E

DA

D

A

Exercises5.1
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9. Communication In addition to axioms, definitions are another important
part of deductive geometry. Defined terms can be explained using previously 
defined terms. For example, consider the definition of a rectangle.

A rectangle is a parallelogram with four right angles. 
This contains the word “parallelogram”.

A parallelogram is a quadrilateral with both pairs 
of opposite sides parallel. This contains the word
“quadrilateral”.

A quadrilateral is a four-sided polygon. This contains
the word “polygon”.

A polygon is a closed figure formed from three or 
more line segments. This contains the word “figure”.

A figure is …

Some words express notions so fundamental that they
cannot be defined using other terms. Some examples
are: point, line, angle, and figure. Although we can
draw diagrams to show what they mean, we do not
attempt to define them. They are undefined terms.

a) Decide which of the following words should be defined. 
If you think the word should be defined, give a definition.
degree triangle vertex
octagon parallel perpendicular
radius plane number

b) Find at least three geometric words that were used in Chapter 4,
but which were not defined. Give definitions of these words.

10. In �ABC (below left), AB = AC. D is a point on BC such that AD bisects
∠ BAC. Prove that AD is perpendicular to BC.

11. In the diagram (above right), point E bisects both AB and CD. Prove 
that ∠ A = ∠ B.

A

C

D B

A

E

B D C

point line

angle figure

Some Undefined Terms
 

•   Point
•   Line 
•   Angle
•   Figure
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12. In the diagram (below left), P is on the bisectors of both ∠ AMN
and ∠ MNC. Prove that ∠ P = 90˚.

13. In the diagram (above right), RQ = RS and TU = TS. Prove that
∠ QSU = 45˚.

14. In the diagram (below left), AB = AC and AB ‖ DE. Prove that BC 
bisects ∠ ACE.

15. In the diagram (above right), AB = AC and AE ‖ BC. Prove that AE 
bisects ∠ CAD.

16. In the diagram (below left), AB = DE and ∠ ABC = ∠ DEC. Prove 
that AE = DB.

17. In the diagram (above right), R is the midpoint of QS, T is the midpoint 
of PR, and QT = QR. Prove that ∠ PTQ = ∠ TRS and PQ = TS.

18. The quadrilateral (top left of the following page) is sometimes called a kite.
Observe that a kite has two distinct pairs of congruent, adjacent sides. Prove
these properties of a kite:

a) One pair of opposite angles is equal.

b) One diagonal bisects the angles through which it passes.

C

B E

T

P

Q R S

A D

E

C

D

A

B E

C

D

A

B

A

N S

U

P
QM

P

B

C D R T
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c) The diagonals intersect at right angles.

19. The quadrilateral (above right) is sometimes called a dart. Like a kite, a dart
has two distinct pairs of congruent, adjacent sides. However, in a dart, one
of the interior angles is greater than 180˚.

a) Do the properties in exercise 18 hold for a dart?

b) Do your proofs in exercise 18 apply to a dart? If your answer is yes,
explain. If your answer is no, make the necessary changes.

20. Thinking/Inquiry/Problem Solving In the diagram at the right,
BC is a diameter of a circle with centre O. Point A is on the circle.
OD and OE bisect chords AB and AC. Prove that OD is 
perpendicular to OE.

21. Prove that the midpoint of the hypotenuse of a right triangle is
equidistant from the three vertices.

22. Application Many puzzles involve deductive reasoning. Solve 
the three puzzles below. Explain your solutions.

a) One  card below has a one-digit number on one side and a geometric
figure on the other side. Which cards should you pick up and turn over  
to find out if every card with an even number on one side has a square 
on the other side?

b) All the labels on the boxes at the right are 
incorrect. You may select only one fruit 
from each box. How can you relabel the 
boxes correctly?

c) You are marooned on an island, where there are
only liars and truth-tellers. You meet a couple
and the husband says, “My wife told me that
she is a liar.” Is he a liar or a truth-teller?

Apples

Oranges

Apples&Oranges

D

B

O

C

A

E
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The proofs we have written so far have all been direct proofs. In a direct 
proof, we begin with a statement we accept as true, and make one deduction
after another until we reach the desired conclusion. Sometimes it is difficult 
or impossible to prove directly that a result is true. In such cases, we may be 
able to prove the result using an indirect proof.

For example, consider the following statement and its proof.

Statement: A triangle cannot have two obtuse angles.

Proof
Either a triangle cannot have two obtuse angles, or it can 
have two obtuse angles.

Suppose �ABC has two obtuse angles.

Since an obtuse angle is greater than 90˚, the sum of the 
two obtuse angles is greater than 180˚. Hence, the sum 
of the three angles in the triangle is greater than 180˚. 
This is impossible because the Angle Sum Theorem 
states that the sum of the angles in a triangle is 180˚.

Therefore, a triangle cannot have two obtuse angles.

Notice how we proved the statement. We assumed it was
not true, and we reached a conclusion that contradicts a
known fact. This means that our assumption that the 

Indirect Proof5.2

Maria Agnesi  (1718–1799)
Born: Milan, Italy

Born to a wealthy and literate
family, Agnesi received an enriched
education. She was encouraged to
participate in philosophical and
mathematical discussions with the
distinguished intellectual guests at
her home. At age nine, Agnesi
delivered a discourse in defence of
higher education for women to an
academic gathering.
Agnesi’s greatest contribution 
to mathematics was a text of
differential and integral calculus. 
In it, she discusses a cubic curve now
known as the “Witch of Agnesi.”
statement is not true is incorrect. The only logical 
possibility is that the statement is true. 

An indirect proof has 4 steps:

Step 1. Begin the proof with the statement we are trying to prove and 
the opposite statement. 

Step 2. Assume that the statement that we are required to prove is
false, and that the opposite statement is true.

Step 3. Show that this assumption leads to a contradiction.

Step 4. Since there is a contradiction, the assumption in Step 2 must 
be false. Therefore, we can conclude that the statement to be 
proved is true.

In Grade 11, you learned that a tangent to a circle is a line that intersects the
circle in only one point. This point is called the point of tangency.
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Inspired by her work, a Canadian has
composed an instrumental work of
the same name.



The following theorem states an important property of tangents to a circle. 
We can prove this theorem using an indirect proof.

Proof
Suppose that line l is a tangent to a circle at A.

Either l is perpendicular to OA or l is not perpendicular to OA. 

Assume that l is not perpendicular to OA.

Then there must be some other point, B, on l such 
that l is perpendicular to OB.

Let C be a point on l so that CB = BA, where C is
on the opposite side of B from A.

In �OBC and �OBA, OB is a common side.

∠ OBC = ∠ OBA
= 90˚

CB = BA

Therefore, �OBC ≅ �OBA by SAS.
Since the triangles are congruent OC = OA.
Since OA is a radius, OC must also be a radius. Hence, C lies on the circle.

For both A and C to lie on the circle, l must intersect the circle at two points.
This is impossible because l is a tangent to the circle.

The assumption that l is not perpendicular to OA must be false.
Therefore, l is perpendicular to OA.

A very significant proof involves the number 
√

2. In ancient 
Greece, Pythagoras and his followers thought that all numbers 
could be expressed as fractions in the form m

n
where m and n

are natural numbers. They also knew that the length of the 
diagonal of the unit square is 

√
2. But they were able to prove

that 
√

2 cannot be expressed in the form m
n

. The Pythagoreans 
were perplexed by this development because it seemed to be 
counterintuitive to them. They did not know about irrational 
numbers, yet they proved that 

√
2 is not a rational number.

Rational and
Irrational numbers 

Student Reference

A B C
l

O

Tangent-Radius Theorem
A tangent to a circle is perpendicular to the 
radius at the point of tangency.
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Theorem√
2 is an irrational number.

Proof

Either 
√

2 is rational or it is irrational.

Assume that 
√

2 is a rational number.

Then there are natural numbers m and n such 
that 

√
2 = m

n
.

Square both sides:

(
√

2)2 =
( m

n

)2

2 = m2

n2

2n2 = m2

Since a perfect square has an even number of prime
factors, m2 has an even number of prime factors and 
2n2 has an odd number of prime factors. Therefore,
this equation is impossible. The assumption that 

√
2

is a rational number is incorrect. Therefore,
√

2 is
irrational.

1. For each statement, write the first two steps of an indirect proof.

a) �ABC and �DEF are not congruent.

b) A line segment has only one right bisector.

c) In an isosceles triangle, the angles opposite the congruent sides are congruent.

d) A line segment has only one midpoint. 

e) If two lines intersect, then the opposite angles are congruent.

f) AB = CD

A

Exercises5.2

• Is it possible for the lengths of all sides of a right triangle to be natural
numbers?

• Why does a perfect square contain an even number of prime factors?

Something to Think About
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Bertrand Russell
(1872–1970)
Born:
Ravenscroft,
Wales

While imprisoned for anti-war
activities, Russell wrote Introduction
to Mathematical Philosophy. In 1938,
he moved to the United States
where, along with Albert Einstein,
he released the Russell-Einstein
Manifesto, calling for the
disarmament of nuclear weapons.
His work in mathematics centred 
on logic and analytic philosophy, 
and he is considered one of the 
most important logicians of the 
20th century. In 1950, Russell was
awarded the Nobel Prize in
Literature in recognition of his
writings on humanitarian ideals 
and freedoms.
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2. State which of the following pairs of statements form a contradiction.

a) Lines l1 and l2 are parallel. 
Lines l1 and l2 do not intersect.

b) l1 ⊥ l2
l1 and l2 are not perpendicular.

c) ∠ A = ∠ B
∠ A > ∠ B

d) ∠ A and ∠ B are congruent
∠ A and ∠ B are supplementary

e) ∠ A and ∠ B are obtuse angles
∠ A and ∠ B are supplementary

f) �ABC is isosceles
�ABC is equilateral

3. In �PQR at the right, ∠ Q = 50˚ and ∠ R = 60˚. Use the method of 
indirect proof to explain why PQ ≠ PR.

4. Use indirect proof to prove that a triangle cannot have two right angles.

5. Communication The outline of an indirect proof is given below. Copy the
proof in your notebook and complete it. Justify all statements in the proof.

In the diagram at the right, lines l1 and l2 are perpendicular to the 
same line m. Prove that l1 ‖ l2.

Proof

Either ___________________________.

Suppose that l1 is not parallel to l2.

Since l1 is not parallel to l2, they intersect at some point A. Let B 
and C be the points of intersection of l1 and l2 respectively with m.

∠ ABD =
∠ ACB =
∠ ABD = ∠ + ∠
∠ ABD > 90˚
But, ____________________________.

Therefore, _______________________.

Hence, __________________________.

Use indirect proof in the following exercises.

6. A line l and a point P not on the line are given at the right. 
Prove that it is impossible for two different lines through P 
to be perpendicular to l. l

P

l1

m

l2
D
B

A
C
E

l1

m

l2

D
B

C
E

B

Q

50˚

60˚

R

P
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7. Knowledge/Understanding In �PQR, ∠ P > 40˚ and ∠ Q = 2∠ P. Prove
that �PQR cannot be an isosceles triangle.

8. In �ABC, AM is the median from A to BC, and ∠ AMC = 60˚. Prove that
AB ≠ AC.

9. In �PQR, PS is the altitude from P to QR, and QS ≠ RS. Prove that PQ ≠ PR.

10. Prove that the bisector of any angle in a scalene triangle cannot be
perpendicular to the opposite side.

11. Thinking/Inquiry/Problem Solving Prove that if two angles in a triangle
are equal, then the sides opposite those angles are equal.

12. Prove that it is impossible for a scalene triangle to have two equal angles.

13. Prove that each number is irrational.

a)
√

3 b) 2
√

2 c)
√

2 + 1

14. Application The ages of Anjanee, Blair, and Concetta are three consecutive
numbers. Only one of the following statements is true.

• Blair is 2 years older than Anjanee.
• Blair is 1 year older than Concetta.
• Anjanee is 1 year older than Concetta.
• Concetta is 1 year younger than Anjanee.

Prove than Anjanee is the oldest of the three. Justify your reasoning.

15. Prove that two lines perpendicular to the same plane do not intersect.

C

P

Q R
S

60˚

A

B C
M
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Consider the following statement:
If a quadrilateral is a square, then it has 4 right angles.

In mathematics, we frequently make statements that are in “if… then…”
form. In an “if… then…” statement, the “if ” part is called the hypothesis and
the “then” part is called the conclusion.

When we interchange the hypothesis and conclusion of an “if… then…”
statement, we obtain a new statement called the converse.

Statement
If a quadrilateral is a square, then it has 4 right angles.

Converse
If a quadrilateral has 4 right angles, then it is a square.

The converse of a true statement may or may not be true. In this case,
the converse is not true because a rectangle has 4 right angles, but 
it is not necessarily a square. Therefore, a rectangle is a counterexample
proving that the converse statement above is false.

On page 261, we proved that if a triangle has two equal sides, then it
has two equal angles. In exercise 5 on page 276, you will prove that 
the converse is true. When a statement and its converse are both true,
we can combine them into a single statement using the words “… if 

Statements and Their Converses5.3
and only if …”, or “iff ” for short.

Statement
If a triangle has two equal sides, then it has two equal angles.

Converse
If a triangle has two equal angles, then it has two equal sides.

Combined statement 
A triangle has two equal angles if and only if it has two equal sides.

In Section 4.2, we proved the Pythagorean Theorem. The converse of this
theorem is also true.

R

S T
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Proof using congruent triangles
Construct �DEF such that ∠ F = 90˚, DF = AC, and EF = BC.

Apply the Pythagorean Theorem to �DEF:
DE2 = DF2 + EF2

= AC2 + BC2

= AB2

Therefore, DE = AB.

Since the three sides of �ABC are equal to the corresponding three
sides of �DEF, �ABC ≅ �DEF. It follows that ∠ F = ∠ C since 
these are corresponding angles of the congruent triangles.

Therefore, ∠ C = 90˚.

In an earlier grade, you discovered that if a transversal intersects two parallel
lines, then the alternate angles are equal. Conversely, if a transversal intersects
two lines, and the alternate angles are equal, then the lines are parallel. These
statements form the basis for the following theorem.

Alternate-Angles Theorem
Suppose a transversal intersects two lines 
l1 and l2. The lines are parallel if and 
only if the alternate angles are equal.

• How could the Pythagorean Theorem be written using the words “… if
and only if …”?

Something to Think About

D

FE

A

Ca

c
b

B

Converse of Pythagorean Theorem
In �ABC, if c2 = a2 + b2 then ∠ C = 90˚. 

A

Ca

c
b

B

l1

l2



We can prove the Alternate-Angles Theorem using an indirect proof. In the proof,
we make use of the Exterior Angle Theorem. You proved this theorem in exercise 10
on page 225. We also make use of the axiom that for any given line l and a point P 
not on l, there exists in the plane of l and P, exactly one line through P parallel 
to l. This is Playfair’s axiom.

Proof of Alternate-Angles Theorem
Draw lines l1 and l2. Draw transversal t that intersects l1 at A and l2 at B.
The alternate interior angles are ∠ 1 and ∠ 2.

We must show that l1 ‖ l2 if and only if ∠ 1 = ∠ 2. Since this involves a
statement and its converse, we must prove two things.

1. Proof that if ∠1 = ∠2, then l1 ‖ l2
Suppose ∠ 1 = ∠ 2.
Either l1 ‖ l2, or l1 is not parallel to l2.
Suppose that l1 is not parallel to l2, and that, therefore,
l1 and l2 meet at some point P.
Consider �ABP. By the Exterior Angle Theorem,
∠ 1 = ∠ 2 + ∠ P. Hence, ∠ 1 > ∠ 2.
But this contradicts the given information that ∠ 1 = ∠ 2.
Therefore, the assumption that l1 is not parallel to l2 is
incorrect. Hence, l1 ‖ l2.

2. Proof that if l1 ‖ l2, then ∠1 = ∠2
Suppose l1 ‖ l2.
Either ∠ 1 = ∠ 2 or ∠ 1 ≠ ∠ 2.
Assume that ∠ 1 ≠ ∠ 2.
Construct line m, through A, such that ∠ 3 = ∠ 2. Then,
according to the first proof, m ‖ l2.
Since l1 ‖ l2, we have two different lines through A that 
are parallel to l2.
This contradicts Playfair’s axiom. 
Therefore, the assumption that ∠ 1 ≠ ∠ 2 is incorrect.
Hence, ∠ 1 = ∠ 2.

• In the first proof, we assumed that l1 and l2 meet on the right side of the
transversal. Should the proof include the case where they meet on the
left side of the transversal?

Something to Think About

A
R

B

l1
m

t

l2

1
3

2

2

A
1

t

P
B

l1

l2

A

B

l1

t

l2

1

2
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A theorem that follows directly from another theorem, and is deducible from
that theorem is called a corollary. The following theorem is a corollary of the
Alternate-Angles Theorem. The proof is left to the exercises.

1. Write each statement in “if… then…” form. State the hypothesis and
conclusion of each statement.

a) A triangle is equilateral if it is mapped onto itself under a rotation of 120˚.

b) Vertically opposite angles are congruent.

c) An equilateral triangle has three equal sides.

d) A right triangle has exactly one 90˚ angle.

e) The longest side of a triangle is opposite to the largest angle.

f) Every square is a rectangle.

g) If a point lies on the perpendicular bisector of a line segment, then it is
equidistant from the ends of that line segment.

h) If an angle is opposite to the longest side of a triangle, then it is the
largest angle in the triangle.

i) If two triangles are congruent, then they have the same area.

2. Write the converse of each statement in exercise 1. Decide whether the
converse is true. If it is not true, provide a counterexample.

3. Communication Rewrite each “if … then” statement in exercise 1 that 
has a true converse in exercise 2 as an “… if and only if …” statement.

4. Knowledge/Understanding Write an example of each of the following.

a) A true statement that has a false converse.

b) A true statement that has a true converse.

c) A false statement that has a true converse.

d) A false statement that has a false converse.

B

A

Exercises5.3

Corresponding-Angles Theorem
A transversal intersects two lines l1 and l2. 
The lines are parallel if and only if the 
corresponding angles are equal.

l1

l2



276 CHAPTER 5 DEDUCTIVE REASONING

5. Prove the converse of the Isosceles Triangle Theorem.

6. The perpendicular bisector of a line segment is the line 
that is perpendicular to the line segment and passes
through its midpoint.

a) Prove that any point P on the perpendicular bisector
of line segment AB is equidistant from the endpoints
A and B.

b) State and prove the converse of the statement in part a.

7. If you construct the perpendicular bisectors of the sides of any triangle,
you will find that they intersect at a common point. We say that they 
are concurrent. The point of intersection of the perpendicular bisectors 
of the sides of a triangle is called the circumcentre, O, of the triangle.

a) Prove that the perpendicular bisectors of the sides of any �ABC
are concurrent.

b) Prove that a circle with centre O can be drawn passing through 
the vertices of the triangle. This circle is called the circumcircle.
Its centre is called the circumcentre.

8. Thinking/Inquiry/Problem Solving

a) Prove that any point P on the bisector of any ∠ ABC
is equidistant from the arms AB and AC.

b) State and prove the converse of the statement in part a.

c) Prove that the bisectors of the angles of any �ABC are
concurrent. The point of intersection is called the incentre, I.

d) Prove that a circle with centre I can be drawn passing 
through the points where the altitudes intersect the sides 
of the triangle. This circle is called the incircle.

9. Prove the Corresponding-Angles Theorem.

10. Application Prove that the diagonals of a parallelogram are perpendicular
if and only if the parallelogram is a rhombus.

11. Prove that a triangle has three equal altitudes if and only if the triangle 
is equilateral.

12. Prove the converse of the Semicircle Theorem.

13. Prove the converse of the Side-Splitting Theorem.

14. Prove the converse of the Tangent-Radius Theorem.

B

P

C

A

I

M

N

P

A BC



15. In their work with logic, the ancient Greeks
encountered some strange paradoxes such as 
this one: This sentence is false.
Is this sentence true or is it false? Suppose it is true.
Then by what it says, it must be false. Suppose it is
false. Then what it says is false, so it must be true!

Here are some other paradoxes like this one:

a) Is the third sentence true or is it false?
1. This book has 1000 pages.
2. This page is in Chapter 2.
3. Sentences 1, 2, and 3 are all false.

b) Are these sentences true or are they false?
1. Sentence 2 is true.
2. Sentence 1 is false.

c) In a booklet of test questions, a page was found 
that contained only the sentence below. Is the 
page blank? 
This page is intentionally left blank.
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Kurt Gödel
(1906–1978)
Born: Brno,
Czech Republic

Until the 20th century,
mathematicians considered
paradoxes like these to be merely
riddles. However, in 1931 Gödel 
used a similar paradox to prove 
that mathematics contains
“undecidable” statements that 
can never be proved. Hence, there
may be true statements that can
never be proved. Gödel proved a
theorem something like the
following:
This theorem cannot be proved.
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Karl Friedrich Gauss (1777–1855) was one of the greatest mathematicians 
of all time. At age 24, he published a treatise on the theory of numbers that
contained three different proofs of an important theorem that had baffled other
mathematicians. Gauss later gave five other proofs of the same theorem. In so
doing, he proved, in eight different ways, a theorem that other mathematicians 
had been unable to prove even once.

Problems in mathematics can frequently be solved in different ways. If you 
can give more than one solution to a problem, you will enhance your problem
solving skills and gain a deeper insight into the nature of mathematics. Since
you obviously expect to get the same result if you solve a problem in more 
than one way, you will also appreciate that mathematics is consistent. This
means that it is impossible to prove that something is true and also to prove 
that it is not true.

In Chapter 4, we often gave more than one proof of a theorem. In Section 5.1,
we gave only one proof of the Isosceles Triangle Theorem. Here are two other
proofs of this theorem. In each diagram, �ABC represents any triangle in
which AB = AC. We must prove that ∠ B = ∠ C.

Proof using congruent triangles
Draw the median from A to the midpoint, M, of BC. Thus, BM = CM. 
Since we are given that AB = AC, and AM is a common side, we can
conclude that �ABM ≅ �ACM by SSS. 

A

Generating Multiple Solutions5.4
It follows that ∠ B = ∠ C since these are corresponding angles of the
congruent triangles.

Proof using symmetry
Draw a line l which bisects ∠ A and intersects BC at D. Then l is a line 
of symmetry, and everything on one side of l has a corresponding
congruent part on the other side of l. Therefore, ∠ B = ∠ C.

A

B CD
l

B CM
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1. Mentally determine each answer in two different ways.

a) 3 × 6 + 3 × 4 b) 20(12 + 10)

c) 5 × 4 × 2 d) 1
2

× 2
3

× 3
4

2. Solve this problem in as many different ways as you can.

Certain candies come in packages of 4. Two people purchased 12 packages
for treats during a 4-day car trip. If the candies are shared equally, how
many does each person get each day?

3. Communication Any triangle is congruent to itself. Explain how this
observation can be used to prove the Isosceles Triangle Theorem.

4. Knowledge/Understanding Prove, in two different ways, that the
midpoints of adjacent sides of a rectangle are the vertices of a rhombus
(below left).

5. The midpoints of the adjacent sides of a quadrilateral are the vertices of 
a parallelogram (above right). You used vectors to prove this result in
exercise 7 on page 245. Give two other proofs of this result.

6. The largest square in this diagram has side length s. 
Write expressions for the side length and the area of 
each smaller square. Solve this problem in two ways.

7. A parallelogram is a quadrilateral in which both pairs of
opposite sides are parallel. Prove the following properties 
of a parallelogram in as many different ways as you can.

a) The opposite sides of a parallelogram are equal in length.

b) The opposite angles of a parallelogram are equal.

c) The diagonals of a parallelogram bisect each other.

B

A

Exercises5.4
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8. The diagrams show two rectangles ABCD. In the first, there is a point P 
on DC such that ∠ APB = 90˚. On the second, there is no such point P.
Determine how to tell, for any given rectangle ABCD, if there is a point P
on DC such that ∠ APB = 90˚.

In exercises 9 and 10, solve each problem in two ways.

9. Triangle ABC and �DBC are isosceles triangles with the same base BC 
(below left). Prove that ∠ ABD = ∠ ACD.

10. In the diagram (above right), prove that �PBC is isosceles.

11. In exercise 5 on page 276, you proved the converse of the Isosceles Triangle
Theorem. Prove the converse in a different way.

12. In exercise 6 on page 276, you proved the converse of the Semicircle
Theorem. Prove the converse in a different way.

13. Thinking/Inquiry/Problem Solving  Solve this problem in two ways.

On the Pythagorean diagram, a new triangle is constructed whose sides are
formed by the diagonals of the squares. Prove that the new triangle is a right
triangle.

A

A
D

B

B

C

C

P

D P C D P C

A B A B



5.4 GENERATING MULTIPLE SOLUTIONS 281

14. Application In the puzzle below, 78 flowers are enclosed in a 13 by 
6 rectangle. The rectangle is cut apart along the solid lines and the 
pieces rearranged. Only 77 flowers remain!

a) Explain, in two different ways, why there is a space instead of a flower 
in the second diagram.

b) What happened to the other flower?

15. The length of chord AB (below left) is equal to the radius of the circle. 
P is any point on the major arc AB. Prove that ∠ P = 30˚.

16. Triangle ABC is an equilateral triangle with sides 6 cm (above right).
Calculate the area of the coloured square.

P

BA

A

BC

O

C



17. Recall that three or more lines that intersect at a common 
point are called concurrent. Certain lines or line segments
associated with a triangle are significant because they are
concurrent. For example, the altitudes all intersect at a point
called the orthocentre. You can prove this in different ways.

AM, BN, and CP are the altitudes of any �ABC. Three 
different proofs that the altitudes are congruent are outlined
below. Complete each proof.

A proof using coordinates

Introduce a system of coordinates such that BC is 
on the x-axis and AM lies along the y-axis.

a) Let BN be the altitude from B to AC. Determine
the equation of the line BN. What is the y-intercept
of this line?

b) Let CP be the altitude from C to AB. Determine
the y-intercept of this line.

c) Compare the y-intercepts in parts a and b, and
complete the proof that the altitudes of �ABC
are concurrent.

A proof using properties of a circle 

Let the altitudes BN and CP intersect at H. Join AH, and 
extend to meet BC at M. Prove that AM is perpendicular 
to BC by following these steps.

a) Explain why B, P, N, and C lie on a semicircle. Use 
some circle properties to write some equal angles.

b) Prove that A, P, H, and N lie on a circle.

c) Complete the proof that the altitudes of �ABC
are concurrent.

A proof using perpendicular bisectors

Through each vertex of �ABC draw a line parallel 
to the opposite side. This creates �PQR as shown.

a) How are the perpendicular bisectors of the sides of 
�PQR related to the altitudes of �ABC?

b) Complete the proof that the altitudes are concurrent.

A

P

CB

R Q

A

M CB

P N

H

A
y

x
M CB

P N

A

M CB

P N

O
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George Polya, a former professor of mathematics at Stanford 
University, gained worldwide recognition for his skills as a 
teacher. In the quotation at the right, Polya is suggesting 
that when we have solved a problem we may think of related 
problems. These may often be obtained by generalizing some 
condition of the problem, or changing some part of the problem 
to make a new problem.

For example, consider the Semicircle Theorem. If a complete 
circle is drawn with diameter AB, then we notice that ∠ APB
is constant as P rotates around the circle (except when P is at 
A or B). We might ask what happens if AB is a chord of the 
circle and not a diameter. If we draw a diagram with P in 
different positions, we will find that when P is on one side 
of AB, ∠ APB appears constant and less than 90˚. When P is 
on the other side of AB, ∠ APB appears constant and is 
greater than 90˚.

A chord that is not a diameter divides a circle into two arcs. 
The longer arc is called the major arc, and the smaller one 
is called the minor arc.

We say inscribed angle
∠APB is subtended by
chord AB.

A B

P

“(No) problem whatever
is completely exhausted.
There remains always
something to do ...”

George Polya

Posing and Solving Problems5.5

Angles in a Circle Theorem
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We can prove this theorem deductively as follows.

Inscribed angles on the same side of a chord 
AB of a circle are equal.

If P is on major arc AB, ∠ APB = ∠ ARB.
∠ APB, ∠ ARB < 90˚

If Q is on minor arc AB, ∠ AQB = ∠ ASB. 
∠ AQB, ∠ ASB > 90˚

Conversely, if A, B, C, and D are four points 
such that C and D are on the same side of AB 
and ∠ ACB = ∠ ADB, then A, C, D, and B lie 
on a circle. They are concyclic.

A

C
D

B

A

P

R

Q
S

B



Proof using isosceles triangles
Construct a circle with centre O. Mark any points A and B 
on the circle that are not endpoints of a diameter.

Case 1: P on major arc AB
Mark point P on the major arc AB. Join AP and PB. First prove
that ∠ APB is constant for all positions of P on the major arc.

Join AO and OB. Join PO and extend to point Q. Then �OAP
and �OBP are isosceles. By the Isosceles Triangle Theorem,
the angles opposite the equal sides in these triangles are equal. 
Let x and y represent the measures of these angles. Since
∠ APB = x + y, we must prove that x + y is constant.

By the Exterior Angle Theorem, ∠ AOQ = 2x and 
∠ QOB = 2y. Therefore,

2x + 2y = ∠ AOQ + ∠ QOB
2x + 2y = ∠ AOB

x + y = 1
2

∠ AOB

∠ APB = 1
2

∠ AOB

Since ∠ AOB is constant for all positions of P on major arc AB, ∠ APB is constant. 
Further, since ∠ AOB < 180˚, ∠ APB < 90˚ .

Case 2: P on minor arc AB
The proof of this case and the converse is left to the exercises.

Observe that inscribed angle ∠ APB is one-half of the central angle ∠ AOB
subtended by chord AB.

The above example shows how we can sometimes create a new result by changing
some condition of a theorem or a problem we have already proved. We have done
this before. For example, in exercise 7 on page 225 we extended the Angle-Sum
Theorem to polygons.

• Why is ∠ AOB constant for all positions of P on major arc AB?

• Does the proof in Case 1 above apply to all positions of P on major 
arc AB? Explain.

• How does the proof of the Angles in a Circle Theorem compare with 
the proof of the Semicircle Theorem on page 262?

Something to Think About

P

B
A

O

Q

x
y

yx

2y2x
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A square piece of cardboard has sides 10 cm. Four isosceles triangles are 
cut off from the corners to form a regular octagon. 

a) Calculate the side lengths of the regular octagon.

b) Create three other problems that are suggested by this one.

Solution

a) Define x as shown in the diagram.
Using the Pythagorean Theorem, CE =

√
2x.

Since the octagon is a regular octagon, BC =
√

2x .

AB + BC + CD = 10

x +
√

2x + x = 10

x = 10
2 +

√
2

Therefore, CE =
√

2x

= 10
√

2
2 +

√
2

.= 4.14
The side lengths of the regular octagon are 
approximately 4.14 cm.

b) Problem 1

Generalize the problem for any size of square. The answer 
expresses the length of the sides of the octagon as a function 
of the length of the sides of the square.
Suppose the sides of the square are s cm. Determine an 
expression for the side lengths of the regular octagon.

Problem 2

Ask a question about areas instead of lengths. 
What percent of the cardboard is wasted to make the octagon?

Problem 3

Ask a similar question about a different figure.
A piece of cardboard in the shape of an equilateral triangle has sides 
10 cm. Three equilateral triangles are cut off to form a regular hexagon.
Calculate the side lengths of the regular hexagon.

The solutions of the problems created in the Example are left to the exercises.

√
2x

xx

xx

x

x

x

x

A D

E

B C

10 cm

Example
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1. Solve the three problems in the Example on page 285.

2. Recall the following exercise from Section 4.2.

ABCD is a square with sides 6 cm. If AM and AN divide the 
square into three regions with equal areas, find the lengths of 
AM and AN.

Create two other problems that are suggested by this one. 
Then solve each problem.

3. Knowledge/Understanding An equilateral triangle with sides 
10 cm is divided into two regions by a line segment parallel to 
one of the sides. 

a) If the regions have equal areas, determine the length of the 
line segment.

b) Create two other problems that are suggested by this one. 
Then solve each problem.

4. A card 12 cm long and 6 cm wide is cut along a diagonal to form 
two congruent triangles. The triangles are arranged as shown. 

a) Find the area of the region where the triangles overlap.

b) Without changing the dimensions of the card, create another 
problem that is suggested by this one. Then solve the problem.

5. Recall the Side-Splitting Theorem from Section 4.3.

Create another problem suggested by this theorem. 
Then solve the problem.

6. Thinking/Inquiry/Problem Solving An equilateral triangle 
has sides 12 cm. It is divided into three triangles of equal area 
by two line segments passing through one of the vertices. 
Determine the lengths of these lines.

7. Create two other problems suggested by exercise 6. Then solve 
each problem.

8. Application In Something to Think About on page 284, you should 
have noted that the proof of the Angles in a Circle Theorem does not 
apply for all positions of P on major arc AB. It applies only when 
O is in the interior of ∠ APB. If not, the diagram is different from 
the one on page 284.

12
x

A

CB

D E

DE ‖ BC

DE = 1
2

BC

12 cm

6 
cm

10

x

D M C

N

BA

B

Exercises5.5
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a) Draw a diagram similar to the one on page 284 with P located so that O
is not in the interior of ∠ APB.

b) Prove the Angles in a Circle Theorem in this case.

9. Prove Case 2 of the Angles in a Circle Theorem.

10. Communication A and B are any two points on a circle. P and Q are points 
on the two arcs of the circle determined by A and B. According to the Angles 
in a Circle Theorem, ∠ APB and ∠ AQB are both constants.

What problem does this situation suggest? Solve the problem.

11. Quadrilateral PQRS is inscribed in a circle (below left). Side PQ is parallel
to side SR. The diagonals intersect at T. Prove that �TSR and �TPQ are
isosceles.

12. Two circles intersect at A and B (above right). A line is drawn through A to
intersect the circles at P and Q.

a) Prove that for all possible positions of line PAQ, ∠ PBQ is constant.

b) What special case occurs when the radii of the circles are equal? 
Explain why it occurs.

c) What special case occurs when each circle passes through the centre 
of the other circle? Explain why it occurs.

13. Prove the converse of the Angles in a Circle Theorem.

14. Equilateral triangles are  
constructed on the sides 
of any �ABC, as shown
at the right. Prove that the 
segments AD, BE, and CF 
all have the same length.

15. Create a problem suggested 
by exercise 14. Solve the 
problem.

A
E

C

D

B

F

C

Note for exercise 14
The Pythagorean
Theorem relates squares
on the sides of a right
triangle. A wide variety
of related problems can
be created by starting
with figures other than
a right triangle and
constructing figures on
their sides. In this case,
we have equilateral
triangles on the sides 
of any triangle.

B

A

P

Q

T

Q

R

P

S
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Review Exercises

1. An isosceles triangle has two equal sides. Prove that the median to the third
side is also the altitude.

2. Two concentric circles are drawn with centre O. OPQ and OMN are straight 
line segments as illustrated in the diagram (below left). Prove that PQ = MN.

A

B C Y
O

M

N

P
Q

A deductive proof derives a result by logical reasoning from axioms accepted as true.

An indirect proof shows that if a result to be proved is assumed false, then this must lead to
a contradiction.

The converse of a statement written as “if p, then q” is the statement “if q, then p.”

Mathematics Toolkit
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3. Triangle ABC is isosceles with AB = AC. AB is extended its own length 
to X, and BC is extended its own length to Y as shown in the diagram 
(above right). Prove that XC = AY.

4. The perpendicular bisector PQ is drawn to a given line segment AB with point 
Q on AB. PQ is extended an equal distance on the other side of line AB. Prove
that the figure formed by joining the ends of the line segments is a rhombus.

5. In the diagram at the right, PA bisects ∠ P, and 
BC is the perpendicular bisector of PA. Prove that AB ‖ RP.

6. If n is an integer such that n2 is even, prove that n is even.

7. Prove that each number is irrrational.

a)
√

5 b)
√

10

P

B

A RQ

C

X
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8. In �ABC, P is a point on BC such that BP ≠ PC and PA bisects ∠ A. 
Prove that AB ≠ AC.

9. Suppose a transversal intersects two lines l1 and l2. Use an indirect method
to prove the following statement. If the corresponding angles are equal then
l1 and l2 are parallel.

10. State the converse of each statement. Also determine whether each statement
and its converse is true, or false. Explain your reasoning but do not provide
a detailed proof.

a) If a right triangle has a 30˚ angle, then it also has a 60˚ angle.

b) If a line intersects a plane in a single point, then the line is perpendicular
to the plane.

c) If −⇀a • (
−⇀
b × −⇀c ) = 0, then the three vectors are coplanar.

d) If a number is a multiple of 6, then it is a multiple of 3.

e) If the sum of the lengths of two line segments is greater than the length of
a third line segment, then a triangle can be formed from the three line
segments.

11. Prove the following statement:
Two exterior angles of a triangle are equal if and only if the triangle 
is isosceles.

12. In quadrilateral PQRS, PQ = QR and the diagonal QS bisects ∠ Q. Prove
that PS = RS. 

13. Line segments AB and CD bisect each other at M. Prove that AC = BD. 

14. Create a problem suggested by exercise 13. 

15. Prove that if two altitudes of a triangle are congruent, then the triangle is
isosceles.

16. Use the method of indirect proof. If m and n are integers and their product
mn is odd, prove that both m and n are odd. 

17. Prove that if a radius of a circle bisects a chord, then it is perpendicular to
the chord.

18. State, then prove the converse of exercise 17.



1. In �ABC, P and Q are the respective midpoints of AB and AC. Suppose PQ
is extended to R so that PQ = QR. Prove that RC ‖ AB.

2. Communication Some people might say that the ASA Congruence Axiom
should be called the ASA or AAS Congruence Axiom.

a) Explain why two triangles are congruent if two angles and a non-contained
side of one triangle are equal to two angles and a non-contained side of
another triangle.

b) Do you agree that the axiom should be renamed? Explain.

3. The line segment AB intersects CD so as to bisect CD 
and DB > AC. Prove that BD is not parallel to AC.

4. Knowledge/Understanding State the converse of each
statement. Decide if the converse is true. If it is not true,
provide a counterexample. If it is true, write the statement 
using “… if and only if …”.

a) If two triangles are congruent, then the corresponding 
angles are congruent.

b) If a triangle has one obtuse angle, then the other two angles must be acute.

c) If the diagonals of a parallelogram are perpendicular, then the paralellogram
is a rhombus.

A
C

B

D

Self-Test
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5. Thinking/Inquiry/Problem Solving Prove in two different ways that the
diagonals of a rectangle are congruent.

6. Application A storeowner claims that an expensive radio has been stolen
from her store. She is convinced that Anna, Bina, Carlos, or Djarat has
stolen the radio. Each person made a statement, but only one of the four
statements was true.

Anna said, “I didn’t take it.”
Bina said, “Anna is lying.”
Carlos said, “Bina is lying.”
Djarat said, “Bina took it.”

Who told the truth? Who took the radio? Write a proof to justify your choice.

7. Prove that a quadrilaterial is a parallelogram if and only if its diagonals
bisect each other.

8. Prove that the number 
√

2 +
√

5 is irrational.
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Curriculum Expectations
By the end of this section you will:

• Solve complex problems and present the
solutions with clarity and justification.

• Solve problems of significance, working
independently, as individuals and in
small groups.

• Solve problems requiring effort over
extended periods of time.

• Demonstrate significant learning and 
the effective use of skills in tasks such
as solving challenging problems,
researching problems, applying
mathematics, creating proofs, using
technology effectively, and presenting
course topics or extensions of course
topics.

The problems in this section offer you the opportunity to solve some complex
problems related to the topics you have studied. Some of these problems are
challenging. You may find it helpful to work with others, to share ideas and
strategies. You may be unable to complete a solution to some of the problems at 
the first attempt. Be prepared to research, to return to a problem again and again.



Focus on … Cyclic Quadrilaterals

A quadrilateral whose vertices lie on a circle 
is called a cyclic quadrilateral.

Problem 1
Prove the Cyclic Quadrilateral Theorem: The opposite angles of a 
cyclic quadrilateral are supplementary. That is, in the diagram at the
right, prove that ∠ A + ∠ C = 180˚ and ∠ B + ∠ D = 180˚ .

Problem 2
Opposite sides of cyclic quadrilateral ABCD are extended to meet 
at E. Prove that �EAD ∼ �ECB.

Problem 3
PQRS is a cyclic quadrilateral in which PQ = PS and RQ = RS.

a) Draw a diagram of this quadrilateral.

b) Prove that �PQR and �PSR are right triangles.

Problem 4
In the diagram, �PQR is inscribed in a circle. A, B, and C are any 
three points on the three arcs determined by the sides of �PQR. 
Prove that ∠ A + ∠ B + ∠ C = 360˚.

Problem 5
Prove a similar result to the one in problem 4 for a cyclic quadrilateral.

Problem 6
Prove the converse of the Cyclic Quadrilateral Theorem: If the opposite angles
of a quadrilateral are supplementary, then the quadrilateral is cyclic.

A
B

C

D

A B

C

D

E

A

B

Q

P

R

C
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Focus on … Tangents to a Circle from an External Point

Problem 7
From a point, P, outside a circle, two tangents can be drawn. 
The line segments joining P to the points of contact are called 
tangent segments. Prove the Equal Tangents Theorem: The tangent
segments from an external point to a circle are equal in length.

Problem 8
In the diagram, the four segments with endpoint E are tangent
segments. Prove that ABCD is a cyclic quadrilateral.

Problem 9
Tangents PS and PT intersect a circle at S and T. Points A and B lie on
segments PS and PT, respectively, such that AB is a tangent to the circle 
at U. Prove that the perimeter of �PAB is equal to 2PS.

Focus on … Tangents and Chords

In the diagram, according to the Tangent-Radius Theorem, ∠ PTC = 90˚.
According to the Semicircle Theorem, ∠ A = 90˚. Therefore, ∠ PTC = ∠ A.
Suppose P moves along the circle to Q as shown on the second diagram. 
Both ∠ QTC and ∠ A are less than 90˚, and it is reasonable to expect that 
they are equal. You will prove this in the next problem.

Problem 10
Prove the Tangent-Chord Theorem: The angle between a tangent to a circle 
and a chord of the circle is equal to the inscribed angle on the opposite side 
of the chord. That is, ∠ QTC = ∠ A.

P

A

T CB

Q
A

T CB

B C

D

E

A

O

P

A

B
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Problem 11
A line is tangent to a circle at B. Points A and C are on 
the line on opposite sides of B. A chord MN is parallel 
to the tangent.

a) Draw a diagram to illustrate this situation.

b) Prove that �MBN is isosceles.

Problem 12
AB and AC are two equal chords in a circle. PA and PB
are tangent segments to the circle.

a) Draw a diagram to illustrate this situation.

b) Prove that ∠ APB = ∠ BAC.

Challenge Problem 13
One leg of a right triangle is a diameter of a circle. Prove
that the tangent at the point of intersection of the circle 
and the hypotenuse bisects the other leg of the triangle.

Focus on … The Nine-Point Circle

There are 9 significant points associated with a triangle 
that always lie on a circle. These points are:

• the midpoints of the sides: D, E, F

• the feet of the altitudes: P, Q, R

• the midpoints of the segments 
joining the orthocentre, H, to 
the three vertices: X, Y, Z

Problem 14
a) Prove that quadrilaterals FEZY and DEXY are rectangles.

b) Explain why the result of part a proves that D, E, F, X, Y,
and Z all lie on the same circle.

c) Why do the points P, Q, and R also lie on this circle?

d) Complete a proof that D, E, F, P, Q, R, X, Y, and Z lie on a circle. 
This circle is called the nine-point circle of the triangle.

A

E

Q

Z
CPD

B
Y

F
R

X

H
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Challenge Problem 15
Prove that the centre of the nine-point circle of any triangle is the midpoint 
of the line segment joining the orthocentre, H, and the circumcentre, O.

Focus on … The Golden Ratio

Twenty-three centuries ago, Euclid posed this problem. “What are
the dimensions of a rectangle with the property that when you divide
it into a square and a rectangle, the smaller rectangle has the same 
shape as the original rectangle?”

For the two rectangles in the diagram to have the same shape,
their length:width ratios must be equal.

x
1

= 1
x − 1

This equation reduces to x2 − x − 1 = 0. The positive root is x = 1 +
√

5
2

, or 

x
.= 1.618033989... . This number is called the golden ratio, and it is often

represented by the Greek letter φ (phi). A rectangle whose length:width ratio 
is φ is called a golden rectangle. Both rectangles in the diagram are golden
rectangles.

The golden ratio occurs in a wide variety of problems (including problem 6 on
page 253).

Problem 16
Square ABCD with sides 2 units long is constructed in a 
semicircle with radius r and diameter PQ.

a) Determine the radius of the circle.

b) Show that rectangle ABQR is a golden rectangle.

Problem 17
The diameter AB of a circle is extended to a point P outside 
the circle. The tangent segment PT has length equal to the 
diameter AB. Prove that B divides AP in the golden ratio.

D RA

P B CO Q

r

1

1 x − 1

x
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Problem 18
ABCDE is a regular pentagon with sides of length 1. Diagonals AD 
and BE intersect at F. Let x represent the lengths of the diagonals.

a) Prove that �AEF ∼ �DBF.

b) Prove that the ratio of the length of a diagonal to the length of 
a side is the golden ratio.

c) Prove that the diagonals intersect each other in the golden ratio.

Problem 19
Use the results of problem 19. Prove that cos 36˚ =

√
5 + 1
4

.

Problem 20
T is any point on a circle with centre O, and P is a point on the 
tangent at T such that PT = 2OT. With centre P, a second circle 
is drawn tangent to the given circle to intersect PT at N.

a) Prove that N divides PT in the golden ratio.

b) Use the result of part a to construct a regular pentagon 
with one side PN using only a ruler and compass.

Challenge Problem 21
In �ABC, the ratio of the sides is AB:BC:CA = 3:4:5. The bisector of ∠ A
intersects BC at O. A circle with centre O and radius OB intersects AO at P 
and Q. Prove that P divides QA in the golden ratio.

Focus on … Prime Numbers

The proof that 
√

2 is irrational in Section 5.2 is a famous proof in the history of
mathematics. Another famous proof is Euclid’s proof that there are an infinite
number of prime numbers. The proof uses the indirect method, and goes like this.

Assume that the number of primes is finite. Therefore, there must be a prime, p,
which is the largest prime. Multiply all the primes together, and add 1. This
forms the following number.

n = (2 × 3 × 5 × 7 × . . . × p) + 1 ➀

Now n cannot be a prime number because it is greater than p, which we
assumed is the largest prime. So n must be a composite number. Hence:

n is divisible by some prime number ➁

O

P

N
T

D

E

A

B

C

1

F

x

296 PERFORMANCE PROBLEMS FOR DEDUCTIVE REASONING



According to ➀ , n is not divisible by any prime number. This contradicts
statement ➁ . This means that the assumption that the number of primes is 
finite is not correct. Therefore, there are an infinite number of prime numbers.

Problem 22
About 200 years ago, German mathematician Lejeune Dirichlet proved the
following theorem.

Dirichlet’s Theorem: Let a and d be any two natural numbers with no 
common factor. Then the infinite arithmetic sequence a, a + d, a + 2d ,
a + 3d, … contains infinitely many prime numbers.

Use this result to prove that there are infinitely many prime numbers whose final
digits are 1, 3, 7, and 9.

Other Problems

Problem 23
Quadrilateral PQRS is inscribed in a circle and PQ ‖ RS. Diagonals RP and SQ
intersect at T.

a) Draw a diagram to illustrate this situation.

b) Prove that �TRS and �TPQ are isosceles.

Problem 24
Opposite sides of cyclic quadrilateral ABCD are extended to 
meet at E (see diagram at right). Prove that �EAC ∼ �EDB.

Problem 25
Two tangents are drawn from an external point P to points A 
and B on a circle with centre O. Prove that PAOB is a cyclic 
quadrilateral.

Problem 26
PM is a tangent segment to a circle with centre O. Segment OP 
intersects the circle at N. If MO = MN, prove that N bisects OP.

Problem 27
State and prove the converse of the result in problem 27.

D

C

EBA
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Problem 28
Two parallel lines are tangent to a circle with centre O. Another tangent to the
circle intersects these lines at Q and S. Prove that �OQS is a right triangle.

Problem 29
Prove that the area of any �ABC is given by the formula 
A = rs, where r is the radius of the inscribed circle, and s

is the semi-perimeter, s = 1
2

(a + b + c).

Problem 30
In problem 20, it is not necessary for P to lie on the 
line containing the diameter. In the diagram, the 
tangent PT and the chord AB have equal lengths. 
Prove that B divides AP in the golden ratio.

Challenge Problem 31
Give an example of two triangles, �ABC and �PQR, in which the three angles
of �ABC are equal to the three angles of �PQR, and two sides of �ABC are
equal to two sides of �PQR, but �ABC and �PQR are not congruent.

Challenge Problem 32
Quadrilateral ABCD is cyclic, with perpendicular 
diagonals AC and BD intersecting at E. Point M 
is the midpoint of CD. Prove that the line through 
M and E is perpendicular to AB.

M

N

D

A

C

B

E

T

B P

A

CB

A

b

a

r

c
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Challenge Problem 33
In �ABC, the bisectors of ∠ B and ∠ C meet AC and AB at M and N respectively. 
If segments BM and CN have the same length, prove that �ABC is isosceles.

Challenge Problem 34
In this problem there are two challenges. The first is to obtain an equation in r.
The second is to solve the equation, but you can do that using technology.

In a semicircle, three connected chords have lengths 1, 2, and 3 respectively.
Find the radius of the semicircle.

Challenge Problem 35
This problem looks simple, and it can be solved in many different ways.
However, one mathematician noted that “the number of blind alleys the
problem leads to is extraordinary.”

The diagram contains three squares. Prove that x + y = z .

x y z

r

1

2
3

PERFORMANCE PROBLEMS FOR DEDUCTIVE REASONING 299



DISCRETE
MATHEMATICS

UNIT III

Chapter 6 Methods of Counting

Chapter 7 The Binomial Theorem
and Mathematical Induction

Performance Problems for 
Discrete Mathematics
Photo not available due
to copyright issues.



Methods of Counting 6
Curriculum Expectations
By the end of this chapter, you will:

• Solve problems, using the additive and
multiplicative counting principles.

• Evaluate expressions involving factorial
notation, using appropriate methods.

• Express the answers to permutation and
combination problems, using standard
combinatorial symbols.

• Solve problems involving permutations
and combinations, including problems
that require the consideration of cases.

• Explain solutions to counting problems
with clarity and precision.

Photo not available due
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We are constantly confronted with making choices. In doing so, it is often
useful to know the possibilities available to us. When the number of
possibilities is small, we can list them all and count them one by one. We must
list the possibilities systematically to avoid leaving out a possibility or listing
one twice.

Suppose a cafeteria has a lunch special consisting
of an egg or ham sandwich (E or H) with milk,
juice, or coffee (M, J, or C).

We can determine the number of lunch specials
by making a systematic list.

EM EJ EC
HM HJ HC

Alternatively, we can draw a tree diagram. Starting from a point, we draw 
2 line segments, one for each choice of sandwich. From each of these 
segments, we draw 3 more line segments, one for each choice of beverage.

E
C
J
M

C
J
M

H

The Fundamental Counting Principle6.1

Art not available due
to copyright issues.
From the list and tree diagram, we see that there are 6 possible lunch specials
we could order.

The tree diagram suggests a method for counting the number of possible
lunch specials without listing each one. When we order a lunch special,
we have two separate actions to take.

Choose a sandwich Choose a beverage
2 choices 3 choices

For each choice of sandwich, there are 3 choices for a beverage.
Thus, there are 2 × 3 = 6 possible lunch specials.

The preceding example illustrates a general principle of counting called
the Fundamental Counting Principle. This principle is also known as the
Multiplication Principle.

Tree diagrams and
lists are only useful
when the number of
possibilities is small.
In this chapter, we
will learn how to
count possibilities
without individually
listing each one.
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The Fundamental Counting Principle can be extended to situations involving
more than 2 actions. 

A store sells 6 different computers, 4 different monitors, 5 different printers,
and 3 different multimedia packages. How many different computer systems
are available?

Solution

To order a computer system, 4 separate actions must be taken.

Choose a Choose a Choose a Choose a
computer monitor printer multimedia package
6 choices 4 choices 5 choices 3 choices

Use the Fundamental Counting Principle.
6 × 4 × 5 × 3 = 360

There are 360 computer systems available.

Example 1 illustrates a generalization of the Fundamental 
Counting Principle. To find the number of ways a series 
of successive actions can be performed, multiply the 
number of ways each action can be made. 

• In calculating the number of computer systems
available, why are the numbers multiplied
instead of added?

Something to Think About

Example 1

The Fundamental Counting Principle
If an action can be done in m ways and for each way, a second action can
be done in n ways, then the two actions can be performed, in that order, in
mn ways.

Take Note

Ada Lovelace  (1815–1852)
Born: London, England

Lovelace, the daughter of poet 
Lord Byron, was destined to be 
a mathematician and scientist.
Lovelace collaborated in the
development of a calculating
machine, called the Analytical
Engine. She predicted that such 
a machine would be able to
compose music, produce graphics,
and would have practical and
scientific application. Lovelace
described a plan for how the
Analytical Engine could generate 
a series of numbers, which is now
regarded as the first computer
program. The US Department of
Defense named a software language
“Ada” in her honour.

6.1 THE FUNDAMENTAL COUNTING PRINCIPLE 303



A Canadian postal code consists of 6 characters. The first, third, and fifth
characters are letters. The remaining characters are numbers. How many
postal codes are possible?

Solution

Draw 6 boxes, one to represent each character in a postal code. 

There are 26 possible choices for a letter (A–Z), and 10 possible choices for
a number (0–9). Write the number of choices in each box.

Use the Fundamental Counting Principle.
26 × 10 × 26 × 10 × 26 × 10 = 17 576 000

There are 17 576 000 possible choices for a postal code.

Sometimes there are restrictions on the choices we can make. In such cases,
deal with the restrictions first.

A president, secretary, and treasurer are to be chosen from among four
people: Asha, Bill, Curt, and Dena. No person can hold more than one office,
and the treasurer must be a woman.

a) Determine the number of ways the offices can be filled.

b) Draw a tree diagram to verify the answer to part a.

Solution

a) Draw 3 boxes to represent the position of president, secretary,
and treasurer. Since there is a restriction on the choice of treasurer,
consider this position first.

If the treasurer must be a woman, either Asha or Dena must be chosen.
Thus, there are 2 choices for the treasurer.

Now consider the choices for president. Anyone can be chosen except 
for the person chosen as treasurer. Thus, there are 3 choices for the
president.

T
2

P
3

S

T
2

P S

T P S

Example 3

L
26

N
10

L
26

N
10

L
26

N
10

L N L N L N

Example 2
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Finally, consider the choices for secretary. Anyone can be chosen
except for the two already chosen as treasurer and president. Thus, there
are 2 choices for secretary.

Use the Fundamental Counting Principle.
2 × 3 × 2 = 12

There are 12 ways the positions can be filled.

b)

In each case, how many odd 3-digit numbers can be formed using the digits
0 to 9?

a) Repeated digits are allowed.

b) Repeated digits are not allowed.

Solution

Draw three boxes, one to represent each digit.

Consider the restrictions first.
Since the number is odd, the last digit must be odd. Therefore,
the last digit can be a 1, 3, 5, 7, or 9. 
A number cannot begin with the digit 0.

a) The last digit can be selected in 5 ways.
Since 0 cannot be the first digit, the first digit can be selected in 9 ways. ≠0

9 10
odd
5

≠0 odd

Example 4

• Why is the analysis more difficult if we fill the positions for president 
or secretary first? Explain using a tree diagram.

• Can we use the Fundamental Counting Principle if we fill the positions
for president or secretary first? Explain.

Something to Think About

Dena

Asha

Treasurer President Secretary

Curt

Bill Curt
Dena

Dena

Bill
Dena
Bill
Curt
Bill
Curt
Asha
Curt
Asha
Bill

Bill

Asha

Curt

T
2

P
3

S
2
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There are no restrictions on the middle digit. It can be selected in 10 ways.
Use the Fundamental Counting Principle.
9 × 10 × 5 = 450

There are 450 numbers that can be formed.

b) The last digit can be selected in 5 ways.
Repeated digits are not allowed, so the first digit can be any digit except
for 0 and the number chosen as the last digit. Thus, the first digit can be
selected in 8 ways.

The second digit can be any digit except for the two already chosen.
Thus, the second digit can be selected in 8 ways.
Use the Fundamental Counting Principle.
8 × 8 × 5 = 320

There are 320 numbers that can be formed.

We can verify the answer in Example 4a by noting that there are 999 integers
between 1 and 999. However, 99 of these numbers (1–99) are 1- or 2-digit
numbers; so, the remaining 999 − 99 = 900 numbers must be 3-digit numbers.
Half of these numbers, 450 numbers, must be odd.

1. A student has 4 different shirts (S1, S2, S3, and S4), 2 different pairs
of pants (P1 and P2), and 3 different pairs of shoes (H1, H2, and H3).

a) Use a tree diagram to list and count the total number of possible outfits.

b) Use the Fundamental Counting Principle to verify your answer to part a.

2. Use a systematic list to list and count the number of 3-digit numbers that
can be formed using the digits 1, 2, and 3 if repeated digits are not allowed.
Verify your answer using the Fundamental Counting Principle.

3. Knowledge/Understanding A lunch special offers a choice of
4 sandwiches, 3 salads, 5 desserts, and 2 beverages. How many different
meals are possible when one item is chosen from each category?

4. A pizza can be ordered with 3 choices of size, 4 choices of crust,
and 6 choices of toppings. How many different one-topping pizzas
can be ordered?

B

A

Exercises6.1

≠0
8 8

odd
5
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5. How many different ways are there to spell out each word vertically?

a) NNNN b) F c) O
I I I AA NN
AA LLL TTT
G LLLL AAAA

AA SSSSS RRR
RRR I I

AAAA O

6. How many even 2-digit numbers are there?

7. In each case, how many odd 2-digit numbers can be made using the digits 1,
2, 3, 4, 5, 6, 7, and 8?

a) Repetitions are allowed.

b) Repetitions are not allowed.

8. In each case, how many 3-digit numbers greater than 500 can be made using
the digits 1, 3, 5, 7 and 9?

a) Repetitions are allowed.

b) Repetitions are not allowed.

9. A home security system has an entry code consisting of 4 digits (0–9) 
that must be entered in the correct sequence. The digits can be repeated 
in the code.

a) How many different entry codes are possible?

b) If it takes a burglar 5 s to try a code, how long would it take to try every
possible code?

10. Refer to exercise 9.
a) How many entry codes are possible if digits cannot be repeated in the code?

b) How many entry codes contain repeated digits?

11. A true-false test has 5 questions. Suppose that a student guesses the answer
to each question.

a) How many possible answers are there for each question?

b) How many different ways are there to complete the test?

12. A multiple-choice test has 5 questions, with 4 possible answers for each
question. Suppose a student guesses the answer to each question. How many
different ways are there to complete the test?
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13. A car licence plate consists of 6 characters. Each character can be any
of the letters from A to Z, or any numeral from 0 to 9.

a) How many licence plates are possible?

b) Explain why the answer to part a is different from the number of licence
plates that would be produced.

14. Application In a hotel in Hong Kong,
a room key is a card. The card has
positions for holes that form a 5 by 10
array. Each position in the array is either
punched with a hole or left blank.

a) How many different keys are
possible?

b) Suppose all the keys were distributed
equally among all the people on
Earth. How many keys would there
be for each person?

15. Communication The book Cent Mille Milliards de Poèmes consists of
10 sonnets written in French. Each sonnet is cut into 14 strips, one for 
each line. The strips can be mixed so a sonnet can be created using any
one of the 14 available strips for each line. It is said that so many sonnets
are possible that you could probably read a sonnet that no one has ever
read before, or will ever read again. Explain. Illustrate with calculations.

16. Thinking/Inquiry/Problem Solving William, Xavier, Yasmin, and Zenobia
have tickets for four seats in a row at a concert.

a) Use a tree diagram or systematic list to count the number of ways they
can seat themselves.

b) In how many of these ways is William in the left-most seat?

c) In how many of these ways are Xavier and Yasmin seated next to 
each other?

d) Explain how the answers to parts a, b, and c could have been calculated
using the Fundamental Counting Principle.

17. The final score in a hockey game is 5 to 2. How many different scores are
possible at the end of the second period? Solve the problem in 2 ways.
a) List and count the possible scores.

b) Use the Fundamental Counting Principle.
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18. The dial on a 3-number combination lock contains markings to represent the
numbers from 0 to 59. How many combinations are possible in each case?

a) The first and second numbers must be different, and the second and third
numbers must be different.

b) The first and second numbers differ by 3.

19. Azadeh has a penny, nickel, dime and quarter in her pocket. How many
different sums of money can she form using any or all of these coins? 
Solve the question in 2 different ways.

20. In a competition between players A and B, the first player to win 2 games in
a row or a total of 3 games wins. Draw a tree diagram to show the possible
outcomes of the competition.

a) How many ways can the competition be played?

b) How many ways can the competition be played if player A wins the
first game?

c) How many ways can the competition be played if no player wins
2 games in a row?

C
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1. Two letters, A and B, can be written in two different orders: AB and
BA. These are the permutations of A and B.

a) List all the permutations of 3 letters A, B, and C. How can you be
certain that you have listed all of them, and that you have not
counted any permutation more than once? How many permutations
are there? Verify your answer using the Fundamental Counting
Principle.

b) List all the permutations of 4 letters A, B, C, and D. How many
permutations are there? Verify your answer using the Fundamental
Counting Principle.

c) Predict the number of permutations of 5 letters A, B, C, D, and E.

d) Suppose you know the number of letters. How can you determine
the number of permutations?

2. Instead of arranging letters in order, we can arrange objects that are
different. Explain your answer to each question.

a) How many different ways can 5 people be arranged in a line?

b) How many different ways can 5 different books be arranged on

Investigation

Permutations Involving Different Objects

Permutations Involving Different Objects6.2
a shelf?

c) How many permutations are there of the letters of the word
PROVE?

3. Products such as 5 × 4 × 3 × 2 × 1 occur frequently when
working with permutations. These are tedious to write, so we
use factorial notation. When a factorial sign ! follows a natural
number n, it means the product of all the natural numbers from
n down to 1. For example, 5! = 5 × 4 × 3 × 2 × 1, or 120. This
is read as “5 factorial”.

a) Write each factorial as a product.
i) 3! ii) 7!

b) Write each expression in factorial notation.
i) 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1

ii) 6 × 5 × 4 × 3 × 2 × 1

Natural numbers are
the positive integers,
that is, the numbers
1, 2, 3, ....
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Many student lockers are secured with a 3-number combination lock. Knowing
the 3 numbers is not sufficient to open the lock. The numbers must be used in
the correct sequence. The order of the numbers is important.

An arrangement of a set of objects is a permutation. 
In a permutation, the order is important. 

How many permutations can be formed using 
all 8 letters in the word QUESTION?

Solution

Draw 8 boxes, one for each letter in the arrangement.

There are 8 possible choices for the first box,
7 remaining choices for the second box, 6 choices 
for the third box, and so on. There is only 1 choice 
for the last box.

Use the Fundamental Counting Principle.
8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 = 8! = 40 320

The number of permutations is 40 320. 

8 7 6 5 4 3 2 1

Example 1

iii) 4 × 3 × 2 × 1 × 3 × 2 × 1

iv) 7 × 6 × 5 × 4 × 3 × 2 × 1
4 × 3 × 2 × 1

c) Your calculator should have a factorial key or menu item.
For example, to determine 5! on the TI-83 Plus graphing
calculator, press: 5 µ ® ® ® 4 e.

d) Evaluate each factorial in parts a and b.

4. For each question, write the answer using factorial notation.
Evaluate the answers in parts a to c.

a) How many permutations can be formed using all the letters in the word MATH?

b) How many ways can 6 children be seated in a row?

c) How many ways can 10 different samples of work be arranged in a mathematics
portfolio?

d) Suppose n different objects are to be arranged. How many ways can this be done?
Explain.
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In Example 1, we calculated the number of permutations of 8 objects. 
This is denoted by P(8, 8). By the Fundamental Counting Principle,
P(8, 8) = 8!.

Your calculator may have a nPr key or a menu item. For example,
to determine P(8, 8) on a TI-83 Plus calculator, press: 8 µ ® ®

® 2 8 e to get the result 40 320.

Sometimes we wish to arrange some, not all, of a set of objects.

How many 3-letter permutations can be formed from the letters in the word
QUESTION?

Solution

Draw 3 boxes. Visualize placing the letters in the boxes.

There are 8 choices for the first box, 7 for the second box, and 6 choices 
for the third box.

8 × 7 × 6 = 336

The number of 3-letter permutations is 336.

In Example 2, we calculated the number of permutations
of 8 objects taken 3 at a time. This is denoted by P(8, 3). 

Notice that P(8, 3) = 8 × 7 × 6. It is the product of the 
first 3 factors of 8!.

Example 2

Permutation of n Different Objects
The number of permutations of n different objects is an arrangement of all
of the objects in a definite order. This is denoted by P(n, n) where:

P(n, n) = n × (n − 1) × (n − 2) × . . . × 3 × 2 × 1
= n! where n is a natural number

Take Note
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We can also write P(8, 3) using factorial notation.
P(8, 3) = 8 × 7 × 6

= 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
5 × 4 × 3 × 2 × 1

= 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
5 × 4 × 3 × 2 × 1

= 8!
5!

= 8!
(8 − 3)!

In general, we can arrange n objects taken r at a time in n!
(n − r)!

ways. This is
denoted by P(n, r).

Visualize r boxes, one for each object to be arranged.

The first box can be filled with any one of the n objects in n ways. The second
box can be filled with any one of the remaining (n − 1) objects in (n − 1) ways.
The third box can be filled with any one of the remaining (n − 2) objects in
(n − 2) ways.

Continue the pattern.
The rth box can be filled with the remaining (n − [r − 1]) objects in
(n − [r − 1]) or (n − r + 1) ways.

Thus, by the Fundamental Counting Principle,

P(n, r) = n × (n − 1) × (n − 2) × ... × (n − r + 1)

We can write this expression more compactly using factorial notation.

P(n, r) = n × (n − 1) × (n − 2) × ... × (n − r + 1) (n − r) × (n − r − 1) × ... × 3 × 2 × 1
(n − r) × (n − r − 1) × ... × 3 × 2 × 1

= n × (n − 1) × (n − 2) × ... × (n − r + 1) × (n − r) × (n − r − 1) × ... × 3 × 2 × 1
(n − r) × (n − r − 1) × ... × 3 × 2 × 1

= n!
(n − r)!

The symbol nPr or
n(r) is sometimes
used instead of 
P(n, r). The symbol
nPr appears on
calculator keys 
or menu items.

Permutation of n Objects Taken r at a Time
The number of permutations of n different objects taken r at a time is
the number of arrangements of r of the n objects in a definite order.
This is denoted by P(n, r) where:

P(n, r) = n × (n − 1) × (n − 2) × ... × (n − r + 1)

= n!
(n − r)!

, where 0 ≤ r ≤ n

Take Note

1Box Number
n

2
n − 1

3
n − 2

4
n − 3

r − 1
n − (r − 2)

r
n − (r − 1)...
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A special case of these formulas occurs when r = n. The first formula becomes
P(n, n) = n × (n − 1) × (n − 2) × . . . × 1, or n! .

The second formula becomes P(n, n) = n!
0!

.

Thus we have n! = n!
0!

. This will only be true if 0! = 1.

For the formula P(n, r) = n!
(n − r)!

to have meaning when r = n, we define 0! = 1.

Use your calculator to verify this definition.

1. a) List and count all the permutations of the letters A, B, C, and D taken
2 at a time.

b) List and count all the permutations of the letters A, B, C, and D taken
3 at a time.

2. How many permutations are there of all the letters in each word?

a) FRY b) FISH c) FIRST

3. Refer to each word in exercise 2.

a) How many 2-letter permutations are there?

b) How many 3-letter permutations are there?

4. How many permutations are there of the words in this sentence?
I DO NOT WANT LUNCH

5. Knowledge/Understanding In how many ways can 7 different fruits
be distributed among each number of children, if each child is to receive
exactly one fruit?

a) 7 children b) 4 children

6. There are 10 different books. How many ways can 4 of these books
be arranged on a shelf?

A

Exercises6.2

Definition of n!
For any natural number n,
n! = n × (n − 1) × (n − 2) × . . . × 3 × 2 × 1

Also 0! = 1.

Take Note
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7. a) Evaluate.
i) P(1, 1)

ii) P(2, 1), P(2, 2)
iii) P(3, 1), P(3, 2), P(3, 3)
iv) P(4, 1), P(4, 2), P(4, 3), P(4, 4)
v) P(5, 1), P(5, 2), P(5, 3), P(5, 4), P(5, 5)

b) Write your answers to part a in a triangle of numbers similar to 
the shape at the right. The triangle can be continued indefinitely
by adding rows. Find as many patterns in this triangle as you can.
Describe each pattern.

8. a) What is the value of 3!?

b) How can you use the value of 3! to find 4!? Write an equation 
that expresses 4! in terms of 3!.

c) How can you use the value of 4! to find 5!? Write an equation 
that expresses 5! in terms of 4!.

d) Write an equation that expresses 6! in terms of 5!.

e) Write an equation that expresses (n + 1)! in terms of n!. 
Prove this result.

9. a) Write 6! in terms of 5!. Use this result to calculate 6!
5!

.

b) Write 6! in terms of 4!. Use this result to calculate 6!
4!

.

c) Write 6! in terms of 3!. Use this result to calculate 6!
3!

.

d) Write each expression without using a factorial symbol.
i) n!

(n − 1)!
ii) n!

(n − 2)!
iii) n!

(n − 3)!

10. Write each expression without using a factorial symbol.

a) (n + 2)!
n!

b) (n − 3)!
n!

c) (n + 1)!
(n − 1)!

d) (n + 4)!
(n + 2)!

e) (n − r + 1)!
(n − r)

f) (n − r + 1)!
(n − r − 2)!

11. Evaluate each expression. Attempt to find the answer without using a
calculator. Use a calculator if the answer cannot be found easily.

a) 3! b) 4! c) 5!

d) 9! e) 52! f) 11!
10!

g) 8!
6!

h) 5!
2!

i) 10!
5!

j) P(7, 2) k) P(5, 5) l) P(10, 3)

m) P(9, 6) n) P(14, 3) o) 10!
2!8!

p) 52!
5!47!

q) 6!
3!3!

B
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12. The 20 members of a math club are to select an executive committee
consisting of a president, vice-president, treasurer, and secretary. No person
may hold more than one office. In how many ways can this be done?

13. Use the digits 1, 3, 5, 7, and 9 with no repetitions.

a) How many 3-digit numbers can be formed?

b) How many 4-digit numbers can be formed?

14. A model train has an engine, a caboose, a tank car, a flat car, a boxcar,
a refrigerator car, and a stock car. How many ways can all the cars be
arranged between the engine and the caboose?

15. An ordinary deck of 52 cards is resting on a table. Suppose the first 4 cards
on the top of the deck are turned over and placed in a row from left to right.

a) Determine the total number of possible arrangements.

b) How many arrangements contain only spades?

16. Application For a dance recital, 4 beginner groups, 7 intermediate groups,
and 3 advanced groups are to perform. The program is set up so that all the
beginner groups perform first, then the intermediate groups, and then the
advanced groups. How many orders are possible?

17. Which of the following expressions are not defined? For each expression
you choose, explain why it is not defined.

a) P(9, 6) b) P(6, 6) c) P(6, 9)

d) P(−6, 3) e) P(6, 2.5) f) P(6, 0)

18. Communication Choose values of n and r in P(n, r). Pose a problem 
for which your value of P(n, r) is the solution. Solve your problem.

19. Thinking/Inquiry/Problem Solving  Solve each equation for n. State any
restrictions on n.

a) (n + 1)!
(n − 1)!

= 20 b) P(n, 2) = 72

c) P(n + 1, 2) = 30 d) P(n + 1, 3) = 12P(n − 1, 2)

e) P(n, 4) = 20P(n, 2) f) 2P(n, 2) = P(2n, 2) − 50

20. Solve each equation for r. State any restrictions on r.

a) P(6, r) = 30 b) P(6, r) = 120 c) P(6, r) = 360 d) P(6, r) = 720

21. Which is larger, n! or 2n? Explain.

22. Prove or disprove the following statement.

For every n ≥ 1, (3n)!
(3!)n is an integer.

C
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1. Consider the words FUEL and FULL. Both words have 4 letters.
However, FUEL has 4 different letters while FULL has 2 identical
letters.

a) How many permutations are there of the letters in the word FUEL?

b) Would there be the same number of permutations of the letters in
the word FULL? Explain.

2. Think of the letters in FULL as F, U, L1, and L2 so that the letters are
all different.

a) List all the permutations of these 4 letters. 

b) Create a table with the following headings.

c) In the first column, write all the permutations from part a that
contain the Ls in the order L1L2. In the second column, write the
corresponding permutation that contains the Ls in the order L2L1.

Permutations in the
Order L1L2

Permutations in the
Order L2L1

Investigation

Permutations Involving Identical Objects

Permutations Involving Identical Objects6.3
For example, three entries in the table will be:

3. a) Refer to the table. If the subscripts on the Ls are removed, are the
permutations in each row the same or different?

b) The question in part a can be asked another way. Does rearranging
the Ls without changing their position give the same permutation or
a different permutation?

FUL1L2

FL1UL2

FL1L2U

FUL2L1

FL2UL1

FL2L1U

Permutations in the
Order L1L2

Permutations in the
Order L2L1

•
•
•

•
•
•
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The Investigation illustrates that there are fewer permutations of a number of
objects if some of them are identical than there are if all of them are different.

Determine the number of permutations of all the letters in each word.

a) LULL b) PEPPERS

Solution

a) LULL
If the 4 letters were different, there would be 4! permutations.
However, in many of these permutations, the 3 Ls are in the same
position but permuted among themselves. 
The 3 Ls can be permuted in 3! or 6 ways. So the 4! permutations
occur in groups of 6, which are in fact the same permutation.
Since we counted 6 times as many permutations as there are,
divide 4! by 3!.

There are 4!
3!

, or 4 permutations of the letters in LULL.

b) PEPPERS
If the 7 letters were different, there would be 7! permutations. However,
in many of these permutations, the 3 Ps are in the same position but
permuted among themselves, and the 2 Es are in the same position
but permuted among themselves.
The 3 Ps can be permuted in 3! or 6 ways. Similarly, the 2 Es can be
permuted in 2! or 2 ways. So the 7! permutations occur in groups of 
6 × 2 or 12, which are in fact the same permutation. Since we counted 
12 times as many permutations as there are, divide 7! by 3! and by 2!.

There are 7!
3!2!

, or 420 permutations of the letters in PEPPERS.

The four
permutations of
LULL are:

ULLL, LULL, LLUL,
and LLLU.

Example 1
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c) Add a third column to your table with the heading Permutations of
FULL. Complete this column.

d) How many permutations are there of the letters in FULL? How does
this compare to the number of permutations of 4 different letters?
Explain.

e) Evaluate 4!
2!

. Explain why this expression gives the number of
permutations of the letters in FULL.



We can generalize the method of Example 1 to obtain the following result.

How many permutations of the letters in the word BEGINNING begin
with B?

Solution

The B can be placed as the first letter in only one way. There are 8 remaining
letters: 1 E, 2 Gs, 2 Is, and 3 Ns.

Thus, the required number of arrangements is 8!
2!2!3!

, or 1680.

Mario’s home is 3 blocks north and 6 blocks west from his school.
In how many ways can Mario make the journey from home to school
if he always travels either south or east?

Solution

Let S represent a south-going route past one block. Let E represent
an east-going route past one block.

One possible route is SSSEEEEEE. In general, for each possible 
route from his house to school, Mario must travel 3 blocks south
and 6 blocks east.

Thus, the problem is equivalent to the number of arrangements
of 9 letters, 3 of which are S and 6 of which are E.

Therefore, Mario can make the trip in 9!
3!6!

, or 84 ways.

House

School

House

School

Example 3

Example 2

Permutations With Identical Objects
The number of permutations of n objects, of which a objects are alike,
another b objects are alike, another c objects are alike, and so on is:

n!
a!b!c! ...

Take Note
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1. Determine each of the following.

a) 5!
2!2!

b) 8!
3!2!

c) 12!
3!3!2!

d) 10!
2!2!4!

2. a) How many permutations are there of all the letters in the word PEEP?

b) List the permutations of PEEP.

3. How many permutations are there of all the letters in each word?

a) ASPARAGUS b) SCISSORS

c) MISSISSAUGA d) PARALLEL

4. How many 9-digit numbers can be formed from 2 ones, 3 twos, and
4 threes?

5. Knowledge/Understanding How many different signals, each consisting
of 8 flags hung in a vertical line, can be formed from 3 identical blue flags,
3 identical white flags, and 2 identical red flags?

6. Communication Consider the words QUESTION and NONSENSE. Explain
why the number of permutations of all the letters in QUESTION is 24 times
that of the number of permutations of the letters in NONSENSE.

7. Five different coins are tossed once each. How many ways can exactly
3 coins be heads and 2 coins be tails?

8. A soccer team has a record of 12 wins, 6 losses, and 2 ties. In how many
different orders could this record have occurred?

9. A true-false test has 5 questions. A student takes the test and randomly
guesses the answer to each question. How many answer keys are possible 
in each situation?

a) All 5 answers are T.

b) Four answers are T and 1 answer is F.

c) Three answers are T and 2 answers are F.

d) Two answers are T and 3 answers are F.

e) One answer is T and 4 answers are F.

f) All 5 answers are F.

10. Add your answers to the 6 parts of exercise 9. Explain why the sum is the
same as the answer to exercise 11 on page 307.

B

A

Exercises6.3
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11. How many arrangements of the letters in the word GEOMETRY begin with
G and end with Y?

12. Application An airline pilot reported her itinerary for 7 days. She spent 1 day 
in Vancouver, 1 day in Regina, 2 days in Ottawa, and 3 days in Yellowknife.

a) How many different itineraries are possible?

b) How many itineraries are possible if she spent the first day in Regina
and the last day in Vancouver?

c) How many itineraries are possible if she spent the first and last day in Ottawa?

13. On each grid, explain how many different paths A can take to get to B.
Only south and east travel directions can be used.

a) b)

c) How many different paths would there be for each size of grid?
i) 10 by 10 ii) x by x

iii) 8 by 12 iv) x by y

14. On each grid, how many different paths are there from A to B? Only south
and east travel directions can be used.

a) b)

15. Thinking/Inquiry/Problem Solving Visualize grids made of cubes in
three dimensions.

a) How many paths are there from A to B if each path must be as short
as possible and follow the edges of the grid? Explain.
i) ii) iii)

b) How many different paths would there be for each size of grid?
i) 10 by 10 by 10 ii) x by x by x

iii) 8 by 10 by 12 iv) x by y by z

A

B
B

AA

B

A

B

A

B

A

B

A

B
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In this section, we will calculate the number of permutations possible when
specific conditions must be met.

A bag contains 3 identical blue marbles and 2 identical red marbles. Four
marbles are taken out of the bag and arranged in a row from left to right.
Determine the number of possible arrangements.

Solution

An arrangement can have either 1 red marble or 2 red marbles. Since these
two situations cannot occur at the same time, consider each separately.

Case 1: 1 red marble
If there is 1 red marble and 3 blue marbles, the number of possible
arrangements is 4!

1!3!
= 4.

Case 2: 2 red marbles
If there are 2 red marbles and 2 blue marbles, the number of possible
arrangements is 4!

2!2!
= 6.

Total number of arrangements = 4 + 6
= 10

The number of possible arrangements is 10.

Example 1

Permutations with Restrictions6.4
When two actions cannot occur at the same time, we say they are mutually
exclusive. We use the following counting principle to count the number of ways
two mutually exclusive actions can occur.

• How does the Addition Principle differ from the Fundamental Counting
Principle?

Something to Think About

The Addition Principle
If two actions are mutually exclusive, and one can be done in m ways and
the other in n ways, then there are m + n ways in which the first or second
action can be performed.

Take Note
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When working with permutations, the formula alone may not be sufficient to
count the number of possible arrangements. 

Consider the 5-letter arrangements of the letters in the word EXPANDS. 

a) How many arrangements contain only consonants?

b) How many arrangements begin with E and end with S?

c) How many arrangements contain the letter N?

d) In how many arrangements do the vowels appear together in the order AE?

Solution

There are 7 letters, of which 5 are consonants and 2 are vowels.
Draw 5 boxes, one for each letter.

a) There are 5 boxes to fill and 5 consonants available.

P(5, 5) = 5!
= 120

The total number of arrangements is 120.

b) After the E and S are placed, there are 3 boxes to be filled
and 5 letters available.

P(5, 3) = 5!
2!

= 60
The total number of arrangements is 60.

c) After the N is selected, it can be placed in any of the 5 boxes.
For each of these choices, there are 4 boxes left to be filled
and 6 letters available.

5 × P(6, 4) = 5 × 6!
2!

= 1800
The total number of arrangements is 1800.

d) Since the A and E must appear together, treat them as a single
unit. There are 4 positions in which they can be placed. For
each of these positions, there are 3 boxes left to be filled and
5 letters available.

4 × P(5, 3) = 4 × 5!
2!

= 240

The total number of arrangements is 240.

4 × 

A E

1 1 5 4 3

N
15 × 6 5 4 3

E
1 5 4 3

S
1

5 4 3 2 1

Example 2
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A group of 6 friends attends a movie. All friends sit in the same row of six seats.

a) How many ways can the group sit together?

b) How many ways can the group sit together if two people in the group
must sit next to each other?

c) How many ways can the group sit together if two people refuse to sit next
to each other?

Solution

a) P(6, 6) = 6!
= 720

The number of ways 6 different people can be placed in 6 different
seats is 720.

b) Treat the two people who must sit next to each other as one unit. Now
there are 5 objects to arrange, this unit and the four remaining people in
the group. The number of arrangements of 5 objects taken all at a time is:

P(5, 5) = 5!
= 120

There are another 120 arrangements with the position of the people in
the unit reversed.

120 + 120 = 240

The total number of arrangements is 240.

c) From part a, there are 720 possible seating arrangements.
From part b, there are 240 arrangements with 2 specific people next 
to each other. 

720 − 240 = 480

The number of arrangements where two specific people are not seated
together is 480.

The 3 letters A, B, and C can be arranged in 3!, or 6 ways.
ABC BCA CAB
ACB CBA BAC

Example 3c
illustrates that in
some instances it
is easier to count
indirectly than
directly.

Example 3

• How does the analysis of each part of Example 2 change if EXPANDS
is changed to EXPENDS? Support your explanations with the
appropriate calculations.

Something to Think About
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However, if these letters are arranged in a circle, no letter is first or last. Thus,
only the position of the letters relative to each other is important. Since the
relative positions are the same in arrangements where one is a rotation of the
other, the following 3 arrangements are the same.

Similarly, the following 3 arrangements are also the same.

Observe, that for every 3 different arrangements in a line, there is only one
corresponding arrangement in a circle. Thus, 3 objects can be arranged in a 

circle in 3!
3

, or 2 ways. Observe that 3!
3

= 2!.

We could also reason this way. Since only the position of the letters relative 
to another is important, it does not matter where on the circle the first letter 
is located. Suppose the position of A is fixed. Then, there are (3 – 1)!, or 
2! ways to arrange the remaining 2 letters.

In exercise 8 on page 326, you will redo Example 3 when the six friends are
seated around a circular table instead of in a row.

Circular Permutations 
The number of ways a set of n objects can be arranged in a circle is:
n!
n

= (n − 1)!

Take Note

CB

A

BC

A

BA

C

CB

A

AC

B

CA

B

BC

A

AB

C
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1. a) In how many ways can 5 people be arranged in a line?

b) In how many ways can 5 people be arranged in a circle?

2. Five groups are to perform at the school show. How many different ways can
the groups be scheduled to perform if one particular group must perform first?

3. Suppose the numbers 1, 2, 3, 4, 5 and 6 are arranged in random order. In
how many arrangements do 3 and 4 appear together and in the order 34?

4. Knowledge/Understanding How many ways can a 5-person family be
arranged in a line for a photograph if the mother and father must stand
together?

5. Four men and 3 women are to be seated in a row of 7 chairs.

a) How many ways can they be seated if the men and women alternate?

b) How many ways can they be seated if the men all sit together and the
women all sit together?

6. Communication Explain in 2 different ways why 12 football players can
be arranged in a circular huddle in 11! ways.

7. How many ways can 4 boys and 4 girls be seated around a circular table so
that the boys and girls alternate?

8. Redo Example 3 with the 6 friends seated around a circular table.

9. How many seating arrangements are possible at a 5-person circular table if
7 people are available?

10. Application If any 7 digits can be used to form a telephone number, how
many 7-digit telephone numbers have at least 1 repeated digit?

11. A box contains 4 identical black balls and 3 identical white balls. Five balls
are taken out of the box and arranged in a row. How many possible
arrangements are there?

12. How many ways can 8 books be arranged on a shelf if 4 of the books belong 
to a numbered set and are to be kept together in numerical order?

13. Thinking/Inquiry/Problem Solving How many 3-letter arrangements are
there of the letters in the word PUPPY? 

B

A

Exercises6.4
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14. How many numbers greater than 300 000 can be formed using all the digits
1, 3, 4, 4, 5, and 5?

15. Consider the possible arrangements of all the letters in the word PARALLEL.

a) How many arrangements are there?

b) In how many arrangements do the 3 Ls appear together?

c) How many arrangements end in PR?

d) In how many arrangements are the 2 As separated by at least 1 letter?

16. Consider the possible arrangements of all of the letters in the word
CANADIAN.

a) How many arrangements begin with the letter A?

b) How many arrangements begin with two As?

c) How many arrangements begin with just 1 A?

d) How many arrangements begin with just 2 As?

17. How many numbers can be formed using all of the digits 1, 2, 3, 4, 5, 6,
and 7 if the odd digits must be in ascending order and the even digits in
descending order?

18. How many even numbers can be formed using all of the digits 1, 1, 2, 4, 6,
and 6?

19. Find the number of 4-letter words that can be formed from the letters in the
word QUESTION under each condition:

a) At least 1 consonant must be used.

b) At least 1 consonant and 1 vowel must be used.

c) No two vowels can be together.

C
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In many situations, when we make a selection from a group of objects, the
order in which we make the selection is not important.

For example, suppose you have to do any 3 of 4 questions on a test. In this
situation, we only care about which 3 questions you choose. The order in
which you choose the questions is not important.

Call the 4 questions A, B, C, and D. From Section 6.2, we know that the
number of ordered selections of 3 questions is given by:

P(4, 3) = 4!
(4 − 3)!

= 4 × 3 × 2

= 24

These 24 permutations are listed below. 

Notice that each choice of 3 questions, for example, A, B, and C, appears 3!,
or 6 times, on the list.

Questions
Chosen

CBA

DBA

DCA

DCB

CAB

DAB

DAC

DBC

BCA

BDA

CDA

CDB

BAC

BAD

CAD

CBD

ACD

ADB

ADC

BDC

ABC

ABD

ACD

BCD

A, B, C

A, B, D

A, C, D

B, C, D

Combinations6.5
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Therefore, the number of possible choices is equal to the P(4, 3) orderings
possible divided by the 3! different orderings for each choice.

Number of choices = P(4, 3)
3!

= 4!
(4 − 3)!3!

= 4!
1!3!

= 4

To play Lotto 649, you must select 6 different numbers from 1 to 49. The
order of the numbers does not matter. How many ways can this be done?

Solution

The number of ways to select 6 numbers from 1 to 49 and order them 
is P(49, 6).

Any selection of 6 numbers can be ordered in 6! ways.

Example 1



Thus, the number of ways to select the 6 numbers without regard to order 

is P(49, 6)
6!

.

P(49, 6)
6!

= 49!
43!6!

= 13 983 816

There are 13 983 816 ways to select the 6 numbers in Lotto 649.

We could have solved Example 1 in another way.

Visualize the 49 numbers in a line as shown.

Denote each number selected by Y (yes) and each number not selected by N
(no). For example, the line shown above represents the selection 4, 11, 18, 26,
41, and 44. For each selection, there must be 6 Ys and 43 Ns. Hence, the
number of possible selections is the number of ways that 6 Ys and 43 Ns
can be arranged. When we use the result of Section 6.3, the number of ways 

is 49!
6!43!

. This agrees with the answer from Example 1.

A selection from a group of objects without regard to order is a combination.
The symbol C(49, 6) represents the number of combinations of 49 different
objects taken 6 at a time.

Evaluating C(49, 6) using a calculator
Your calculator may have a nCr key or menu item. For example,
to determine C(49, 6) on the TI-83 Plus graphing calculator,
press: 49 µ ® ® ® 3 6 e

Hence, C(49, 6) = 13 983 816

Evaluating C(49, 6) using factorials
If your calculator does not have a nCr key or menu item, it should 
have a factorial key.
Key in: 49 I± 6 I± 43 I= to display 13 983 816.

Evaluating C(49, 6) using arithmetic
C(49, 6) = 49!

6!43!

= 49 × 48 × 47 × 46 × 45 × 44
6 × 5 × 4 × 3 × 2 × 1

= 13 983 816

Observe the pattern. The
numerator and denominator
start with 49 and 6 respectively,
and each have 6 factors.

The symbol 
(

n
r

)
is 

often used instead
of C(n, r). The
symbol nCr appears
on calculator keys
or menu items.

N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N

1 2 3

Y

4 5 6 7 8 9 10

Y

11 12 13 14 15 16 17

Y

18 19 20 21 22 23 24 25

Y

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Y

41

N

42

N

43

Y

44

N N N N N

45 46 47 48 49
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A standard deck of 52 playing cards consists of 4 suits (spades, hearts,
diamonds, and clubs) of 13 cards each.

a) How many different 5-card hands can be formed?

b) How many different 5-card red hands can be formed?

c) How many different 5-card hands can be formed containing at least
3 black cards? 

Solution

a) C(52, 5) = 52!
5!47!

= 2 598 960
The number of combinations of 5 cards chosen from 52 cards is 2 598 960.

b) There are two red suits (hearts and diamonds) for a total of 26 red cards.

C(26, 5) = 26!
5!21!

= 65 780
The number of combinations of 5 cards chosen from 26 cards is 65 780.

Spades

Clubs

Hearts

A DECK OF

52 CARDS

DiamondsRE
D

BL
AC

K

Example 2

Combinations
A combination of n different objects taken r at a time is a selection of r
of the n objects without regard to order.

The total number of such combinations is denoted by C(n, r) where:

C(n, r) = n!
r!(n − r)!

, where 0 ≤ r ≤ n

The symbol C(n, r) is read as “n choose r”.

Take Note
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c) There could be 3, 4, or 5 black cards. Consider each case separately.

Case 1: 3 black cards and 2 red cards
3 black cards can be chosen in C(26, 3)ways, and for each of these ways 
2 red cards can be chosen in C(26, 2) ways.
The total number of combinations is:

C(26, 3) × C(26, 2) = 26!
3!23!

× 26!
2!24!

= 845 000

Case 2: 4 black cards and 1 red card
4 black cards can be chosen in C(26, 4) ways, and for each of these ways
the 1 red card can be chosen in C(26, 1) or 26 ways.
The total number of combinations is:

C(26, 4) × 26 = 26!
4!22!

× 26

= 388 700

Case 3: 5 black cards
5 black cards can be chosen in C(26, 5) ways, which is
26!

5!21!
= 65 780

845 000 + 388 700 + 65 780 = 1 299 480

Thus, the number of combinations is 1 299 480.

1. Consider the letters A, B, C, and D.

a) List all the different 2-letter permutations of these 4 letters.

b) List all the different 2-letter combinations of these 4 letters.

c) How is the number of 2-letter permutations related to the number 
of 2-letter combinations? Explain.

2. From a group of 5 student representatives (A, B, C, D, and E), 3 will be
chosen to work on the dance committee.

a) How many committees are possible?

b) List all possible committees.

3. How many different 10-question examinations can be formed from a test
bank containing 25 questions?

A
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4. In a Scratch & Win promotion, participants scratch 
any 3 spots on a card containing 9 spots. The person
who has 3 matching spots wins the prize shown
under the spots. How many different ways are there
to scratch 3 spots?

5. Refer to exercise 2. Each committee must have a
chairperson. How many committees are possible?
Solve the problem in two ways.

6. Knowledge/Understanding A committee consists of 10 people.

a) How many ways can a subcommittee of 3 people be selected from the
committee?

b) How many ways can an executive subcommittee consisting of 3 people
(chairperson, treasurer, and secretary) be selected from the committee?

c) Explain why the answers to parts a and b are different.

7. a) How many ways can a committee of 6 students be chosen from
10 students?

b) How many ways can a committee of 4 students be chosen from
10 students?

c) Explain why the answers to parts a and b are the same.

8. Communication

a) Evaluate.
i) C(0, 0)

ii) C(1, 0), C(1, 1)
iii) C(2, 0), C(2, 1), C(2, 2)
iv) C(3, 0), C(3, 1), C(3, 2), C(3, 3)
v) C(4, 0), C(4, 1), C(4, 2), C(4, 3), C(4, 4)

vi) C(5, 0), C(5, 1), C(5, 2), C(5, 3), C(5, 4), C(5, 5)

b) Write your answers to part a in a triangle of numbers similar to the shape
above right. Find as many patterns in this triangle as you can. Describe
each pattern.

c) Use patterns to write two more rows of the triangle.

9. Thinking/Inquiry/Problem Solving From Section 6.3, we know that 

4 As, 3 Bs, 2 Cs, and 1 D can be arranged in 10!
4!3!2!

ways. The method of 

Section 6.3 uses permutations to develop this formula. Explain how the 
result could also have been obtained using combinations.

B
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10. Simplify, without using the triangle in exercise 8 or a calculator.

a) C(10, 0) b) C(10, 1) c) C(10, 2) d) C(11, 2) e) C(12, 2)

f) C(10, 3) g) C(11, 3) h) C(12, 3) i) C(10, 4) j) C(11, 4)

11. Write an expression for each number of combinations. State any restrictions
on n.

a) C(n, 0) b) C(n, 1) c) C(n, 2) d) C(n, 3) e) C(n, 4)

12. Five boys and five girls were nominated for a homecoming celebration at 
a local school. How many ways can a king, a queen, and a court of two
students be selected from those nominated?

13. From a deck of 52 cards, how many 5-card hands can be formed in each
case?

a) There are only aces or face cards.

b) There are only cards numbered 2, 3, 4, 5, 6, 7, 8, 9, and 10.

c) There are only clubs.

d) There are only red cards.

14. From a deck of 52 cards, the 12 face cards are removed. From these face
cards, 4 are chosen. How many combinations that have at least two queens
are possible?

15. From a deck of 52 cards, how many different 5-card hands can be formed in
each case?

a) with exactly 3 spades

b) with at least 3 spades

c) with at most 3 spades

16. Application To play in the Super 7 lottery, you must choose 7 different
numbers from 1 to 47. To play in the Lotto 649 lottery, you must choose 
6 different numbers from 1 to 49. To win each jackpot, the numbers chosen
must match the numbers drawn by the lottery corporation.

a) Without doing any calculations, which lottery do you think has more
combinations of possible winning numbers? Explain.

b) How many combinations of possible winning numbers does each lottery have?

c) How many more combinations of possible winning numbers does one
lottery have than the other?

17. Sacha invites 6 of her friends to a party.

a) In how many ways can they be selected from among 10 friends?

b) How many ways can they be selected if two of the 10 friends are not on
speaking terms and will not attend the party together?
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18. A 3-member committee is to be chosen from the 6 young women and 
8 young men of the student council. One member of the committee will 
be chosen as the spokesperson. How many ways can the committee be
formed if it must have at least 1 person of each gender?

19. Solve each equation for the indicated variable. State any restrictions on 
the variable.

a) C(n, 2) = 10 b) C(8, r) = 28 c) C(n, 4) = 35

d) C(n, 4) = 70 e) C(6, r) = 15 f) C(10, r) = 120

20. Eight points are marked on a circle.

a) How many triangles can be formed using any 3 of the 8 points?

b) How many line segments can be formed using any 2 of the 8 points?

c) Suppose the points are joined in order to form an octagon. How many
diagonals does the octagon have?

21. There are 8 boys and 12 girls in a drama club. How many ways can a
committee of 5 be selected in each case?

a) There must be exactly 2 boys and 3 girls.

b) There must be at least 2 boys.

22. The ballot for a student council election contains 3 candidates for president,
3 for secretary, and 2 for treasurer. A ballot is valid if a student votes for at
least one position. How many ways can the ballot be marked?

23. Three different numbers are chosen from 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10.
How many ways can the numbers be chosen so that no 2 of the 3 numbers
are consecutive?

24. Five-card poker is played by choosing 5 cards from a standard deck of 
52 cards. From Example 2a, we know that 2 598 960 different hands are
possible. The table on the following page shows the various 5-card hands
that can be formed. Verify the number of ways each hand can occur.

Recall that in a standard deck of cards, there are 13 different kinds of cards
(2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s, jacks, queens, kings, aces) with 4 cards of
each kind (one of each suit: hearts, diamonds, spades, clubs).



6.5 COMBINATIONS 335

25. Recall that a factor of a natural number n is any number that divides n with 
no remainder, including 1 and n. How many factors of each number are there?

a) 36 b) 360 c) 3600

26. How many 5-letter combinations are there in the letters of the word
KINGSTON?

27. The English alphabet consists of 21 consonants and 5 vowels.

a) In how many ways can 4 consonants and 2 vowels be selected?

b) How many “words” consisting of 4 consonants and 2 vowels can be formed?

c) How many of the words in part b begin with R?

d) How many of the words in part c contain E?

28. On May 17, 1998, the Powerball Lottery in Oregon had a main jackpot of
$195 million U.S. In this lottery, participants choose 5 different numbers
from 1 to 49 and 1 number from 1 to 42. The order of the numbers is
unimportant. How many different ways are there to choose the numbers?

Description
Number
of waysType of hand

Ace, king, queen, jack, and
10 of one suit

5 consecutive cards of one suit
(excluding a royal flush)

4 cards of one kind and 1
other card

3 cards of one kind and 2 cards
of a second kind

Any 5 cards of the same suit, but
not in sequence

5 consecutive cards, but not all of
the same suit

Exactly 3 cards of one kind and
2 different cards

1 pair each of two different kinds
and one card of a third kind

2 cards of one kind and 1 card each
of three different kinds

Any hand not included above

4

36

624

3744

5108

10 200

54 912

123 552

1 098 240

1 302 540

Royal flush

Straight flush

Four of a kind

Full house

Flush

Straight

Three of a kind

Two pairs

One pair

No pair



Review Exercises

Fundamental Counting Principle
• If a first action can be done in a ways and for each of these ways, a second action can be

done in b ways, then these actions can be performed, in this order, in a × b ways.

Addition Principle
• If two actions cannot occur at the same time (are mutually exclusive), and one can be

done in m ways and the other in n ways, then there are m + n ways in which the first or
second action can be performed.

Factorial notation
• The product of the first n natural numbers is called n factorial, or n!, where:

n! = n × (n − 1) × (n − 2) × . . . × 3 × 2 × 1

Also 0! = 1.

Permutations
• A permutation is an ordered arrangement of objects.

• The number of permutations of n different objects taken n (all) at a time is P(n, n) = n!.

• The number of permutations of n different objects taken r at a time is

Mathematics Toolkit
Counting Tools
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P(n, r) = n!
(n − r)!

, where 0 ≤ r ≤ n.

• The number of permutations of n objects, of which a objects are alike, another b objects 

are alike, another c objects are alike, and so on is n!
a!b!c! ...

.

• The number of permutations of n objects arranged in a circle is n!
n

= (n − 1)!.

Combinations
• A combination is an unordered arrangement of objects.

• A combination of n different objects taken r at a time is C(n, r) = n!
r!(n − r)!

, 0 ≤ r ≤ n .

Guidelines for choosing a counting method
• If repetition is allowed, use the Fundamental Counting Principle.

• If repetition is not allowed, and order is important use permutations.

• If repetition is not allowed, and order is not important use combinations.

• To count mutually exclusive events, use the Addition Principle.



1. A pen is available in 4 colours (red, black, blue, green), 3 different writing
tips (medium, fine, extra fine), and 2 types of ink (regular, gel). How many
different choices of pens are available?

2. Use the digits 2, 3, 6, 8, and 9. Repeated digits are not allowed.

a) How many 3-digit numbers can be formed?

b) How many even 3-digit numbers can be formed?

c) How many 3-digit numbers greater than 350 can be formed?

3. A postal code consists of a letter, a digit, a letter, a digit, a letter, and a digit.
The letters D, F, I, O, Q, and U are never used. In addition, W and Z are not
used as the first letters of postal codes. Repetition of letters and digits is
allowed.

a) How many different postal codes are possible?

b) Suppose the post office removed the restrictions on the letters. How many
extra postal codes would be available?

4. An automated teller machine (ATM) requires a 4-digit personal identification
number (PIN). The first digit can be 0. In each case, how many such PIN
numbers are possible?

a) Repetitions are allowed.

b) Repetitions are not allowed.

5. Alice, Bob, and Carol are having dinner at a restaurant. There are 5 dinner
specials available. Specials 1 and 2 are vegetarian. Specials 1 and 5 contain
nuts. Each orders a dinner special.

a) In how many different ways can they order dinner?

b) In how many different ways can they order dinner if Bob is vegetarian
and Carol is allergic to nuts?

6. The dial on a 3-number combination lock contains markings to represent the
numbers from 0 to 59. How many combinations are possible in which the
first and second numbers differ by at least 3?

7. a) How many arrangements are there of all the letters in the word NUMBER?

b) How many arrangements begin with N and end with R?

8. There are 8 horses in a race. How many possibilities are there for the win,
place, and show results (the first three finishers)?

9. There are 7 empty seats on a bus and 4 people come on board. How many
ways can they be seated?
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10. A sports club with 30 members wishes to pick a president, a vice-president,
a secretary, and a treasurer. Assume that no person can hold two offices.
How many ways can the selections be made?

11. How many ways can 5 different math books, 3 different history books, and 
2 different science books be arranged on a shelf if books of the same subject
are to be kept together?

12. Refer to the books in exercise 11. How many ways can 2 books from
different subjects be selected?

13. Four-letter arrangements are to be formed from the word PROBLEMS.

a) How many arrangements are possible?

b) How many arrangements do not contain a vowel?

c) How many arrangements contain the letter M?

d) How many arrangements contain B and L together in the order BL?

14. Solve for n or r. State any restrictions.

a) P(n, 3) = 210 b) P(n, 4) = 360

c) P(5, r) = 20 d) P(8, r) = 336

15. Write the following expressions without using a factorial symbol.
State any restrictions.

a) (n + 3)!
(n + 1)!

b) (n − 1)!
(n + 1)!

c) (n − r + 3)!
(n − r)!

16. How many 9-digit numbers can be formed from 3 eights, 2 fours, 2 twos,
and 2 ones?

17. A soccer team has a record of 7 wins, 6 losses, and 2 ties. In how many
different orders could this record have occurred?

18. How many different ways can the letters in the word NIPISSING be arranged?

19. How many different routes are possible from the point (0, 0) to the point
(3, 2) if you travel in a positive direction along a coordinate grid with
integer coordinates?

20. Use the digits 2, 3, 4, 7, 8, and 9 to form a 3-digit number. Repetitions are
not permitted.

a) How many 3-digit numbers can be formed?

b) How many of these numbers are less than 400?

c) How many of these numbers are even? odd?



21. A car licence plate can consist of up to 6 characters. Each character can be
any letter from A to Z, or any numeral from 0 to 9. How many licence plates
are possible?

22. In each case, how many ways can 3 boys and 2 girls sit in a row?

a) The boys and girls are to alternate.

b) The three boys are to sit together.

23. Three Canadians, 4 Americans, and 2 Mexicans attend a trade conference. In
how many ways can they be seated in a row if people of the same nationality
are to be seated next to each other?

24. Redo exercise 23 if the delegates sit at a round table.

25. Explain how you can determine whether a counting problem involves
permutations or combinations. Support your explanation with an example.

26. A football team has 6 basic plays. How many arrangements of 3 different
plays could be called?

27. How many ways can a Winter Carnival committee of 6 people be selected
from 8 boys and 10 girls in each case?

a) There are no restrictions.

b) There are exactly 4 boys on the committee.

c) There are at least 4 girls on the committee.

28. A poker hand consists of 5 cards dealt from an ordinary deck of 52 cards.

a) How many possible poker hands are there?

b) How many different hands are there consisting of 3 kings and 2 queens?

c) The hand in part b is an example of a full house, 3 cards of 1 kind and 
2 of another. How many different full houses are there?

29. Ten points are marked on a circle.

a) How many triangles can be formed using these points?

b) Suppose one of the points is labelled as A. How many triangles contain
point A as a vertex?

30. How many 7-letter permutations are there of the letters in the word
OKANAGAN?
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Self-Test

1. Suppose you have a penny, nickel, dime, and quarter in your pocket. You
select two coins at random. List and count how many different sums of
money can be formed.

2. Knowledge/Understanding

a) A book club offers a choice of 5 books from a list of 30. In how many
ways can this be done?

b) At a movie festival, a team of judges is to select the first, second, and
third place finishers from the 18 films entered. How many ways can this
be done?

c) How many permutations can be formed using all the letters of the word
ANTARCTICA?

3. Application Suppose 5-digit licence plates are to be made using the digits
0 to 9.

a) How many licence plates are possible if the first digit cannot be 0 and
repetition of digits is not allowed?

b) How many licence plates are possible if the first digit cannot be 0 and
repetition of digits is allowed?

c) In how many arrangements in part b do repetitions occur?

4. Communication

a) Write an equation that relates P(n, r) to C(n, r).
b) Explain the relationship in part a.

5. Three men, 2 women, and a child are seated at a round table.

a) How many different seating arrangements are possible?

b) How many different seating arrangements are possible if the child must
sit between the 2 women?

6. Thinking/Inquiry/Problem Solving How many 5-letter permutations
consisting of two vowels and three consonants can be formed from the
letters A, E, I, O, B, H, R, Q, and Z?
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The Binomial Theorem and 
Mathematical Induction 7The Binomial Theorem and 
Mathematical Induction 7
Curriculum Expectations
By the end of this chapter, you will:

• Prove relationships between the
coefficients in Pascal’s triangle, by
mathematical induction and directly.

• Describe the connections between
Pascal’s triangle, values of C(n, r) , and
values for the binomial coefficients.

• Solve problems, using the binomial
theorem to determine terms in the
expansion of a binomial.

• Use sigma notation to represent a series
or a sum of series.

• Demonstrate an understanding of the
principle of mathematical induction.

• Prove the formulas for the sums of
series using mathematical induction.

• Prove the binomial theorem, using
mathematical induction.



In exercise 8 on page 332, you wrote some values of C(n, r) in a triangular
pattern. This triangular array of numbers has intrigued mathematicians for
centuries. Chu Shih-Chieh, a Chinese mathematician of the thirteenth century,
called it the “Precious Mirror of the Four Elements”. We call it Pascal’s
triangle in honour of French mathematician Blaise Pascal (1623–1662) who
developed and applied many of its properties.

The top row of Pascal’s triangle is counted as the 0th row, and the 1 at the

beginning of each row is counted as the 0th entry of that row. We begin

counting at 0 so that in the nth row, the rth entry is the number of combinations 

of n objects taken r at a time, C(n, r) = n!
r!(n − r)!

. So, in the 4th row, the 0th

entry is C(4, 0) = 1, the 1st entry is C(4, 1) = 4, the 2nd entry is C(4, 2) = 6,

0th row

1st row

2nd row

3rd row

4th row

5th row

6th row

The pattern continues.

0th diagonal

1st diagonal

2nd diagonal

3rd diagonal

4th diagonal

5th diagonal

6th diagonal
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……

Pascal’s Triangle7.1
the 3rd entry is C(4, 3) = 4, and the 4th entry is C(4, 4) = 1.

In exercise 8 of page 332, you found some patterns in Pascal’s triangle. Here
are two important patterns you probably discovered, and another pattern you
might have not discovered.

Pascal’s Triangle

Pascal’s triangle contains all the combinatorial coefficients.

The coefficient C(n, r) = n!
r!(n − r)!

is entry r in row n, where 

n = 0, 1, 2, … and 0 ≤ r ≤ n.

Take Note
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The Symmetrical Pattern
The numbers in each row are “symmetric” in that numbers 
to the left of the middle are identical to those to the right 
of the middle. Hence the numbers in each row read the 
same from left to right or from right to left.

C(n, r) = C(n, n − r)

In the 6th row, the first 15 is C(6, 2) and the second 15 is
C(6, 4). We know that C(6, 2) = C(6, 4) since each
expression equals 15. Here are two proofs of this result. 

Numerical proof

C(6, 4) = 6 × 5 × 4 × 3
4 × 3 × 2 × 1

= 6 × 5 × 4 × 3
4 × 3 × 2 × 1

= 6 × 5
2 × 1

= C(6, 2)

We can also use factorials to prove that C(6, 2) = C(6, 4) .
See exercise 7 on page 347.

Combinatorial proof

Suppose a committee of 2 is to be selected from 6 eligible people. This can 
be done in C(6, 2) ways. An alternate but equivalent approach is to select the 
4 people who are not on the committee. This can be done in C(6, 4) ways.
Therefore, C(6, 2) and C(6, 4) must be equal.

In general, C(n, r) = C(n, n − r); the proofs are left to the exercises.

Symmetrical Pattern
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Florence 
Nightingale 
(1820–1910)
Born: Florence,
Italy

Nightingale was born in Italy, but
raised in England. She developed an
interest in social issues and studied
the application of statistical methods
to social science data. Nightingale
gained her nursing experience while
travelling through Europe and
Egypt. In 1854, at the start of the
Crimean war, she became nursing
administrator of English military
hospitals. Nightingale collected data
on the deaths of soldiers and used
them to calculate mortality rates,
which she represented using polar
area diagrams. Nightingale revealed
how the unsanitary conditions of the
hospitals killed more soldiers than
the battlefields.
In 1858, Nightingale became the first
woman elected to the Royal
Statistical Society.

Photo not
available
due to

copyright
issues.



The Recursive Pattern
In each row, each number except the first and last is the sum of the two
numbers immediately above it. 

C(n, r) = C(n − 1, r − 1) + C(n − 1, r)

For example, in the 6th row, the second 15 is the sum of the numbers 5 and 10
in the 5th row: C(6, 4) = C(5, 3) + C(5, 4).

We can prove that C(6, 4) = C(5, 3) + C(5, 4) in two ways.

Numerical proof

C(5, 3) + C(5, 4) = 5 × 4 × 3
3 × 2 × 1

+ 5 × 4 × 3 × 2
4 × 3 × 2 × 1

The common denominator is 4 × 3 × 2 × 1.

C(5, 3) + C(5, 4) = (5 × 4 × 3 × 4) + (5 × 4 × 3 × 2)
4 × 3 × 2 × 1

Each term in the numerator has a common factor of 5 × 4 × 3.

C(5, 3) + C(5, 4) = 5 × 4 × 3 × (4 + 2)
4 × 3 × 2 × 1

= 6 × 5 × 4 × 3
4 × 3 × 2 × 1

= C(6, 4)
We can also use factorials to prove that C(6, 2) = C(6, 4) . See exercise 7 on
page 347.

Combinatorial proof

C(6, 4) represents the number of committees of 4 people that can be selected
from 6 people: A, B, C, D, E, and F. Select a single person, say A. Observe
that 2 types of committees can be formed: those that contain A, and those that
do not contain A.

If A is on the committee, the other 3 committee members must be chosen from
the remaining 5 people; there are C(5, 3) ways to do this. 

If A is not on the committee, all 4 committee members must be chosen from
the remaining 5 people; there are C(5, 4) ways to do this. 

This is a
remarkable
argument: simple
and convincing,
yet difficult to
discover.
“Argument from a
physical analogy”
is an important
type of
mathematical
proof.

Recursive Pattern

+ + + + +

1

1

1

1

1

1

1

1

2

3

4

5

6

1

3

6

10

15

1

4

10

20

1

5

15

1

61

1 1

344 CHAPTER 7 THE BINOMIAL THEOREM AND MATHEMATICAL INDUCTION



7.1 PASCAL’S TRIANGLE 345

Since these 2 possibilities are mutually exclusive and there are no other
possibilities, the number of ways to choose the committee is C(5, 3) + C(5, 4).
Therefore, C(6, 4) = C(5, 3) + C(5, 4).

In general, C(n, r) = C(n − 1, r − 1) + C(n − 1, r) . This relationship is called
Pascal’s formula. The proofs are left to the exercises. 

The Diagonal Pattern
In Pascal’s triangle, the partial sums of any diagonal appear in the next
diagonal. Since the numbers and their sum form an L-shape, this pattern is
sometimes called a “hockey-stick pattern”.

C(r, r) + C(r + 1, r) + C(r + 2, r) + . . . + C(n, r) = C(n + 1, r + 1)

For example, the sum of the first 5 numbers in diagonal 2 is entry 3 in row 7. That is:

1 + 3 + 6 + 10 + 15 = 35

This can be written in combinatorial notation as:

C(2, 2) + C(3, 2) + C(4, 2) + C(5, 2) + C(6, 2) = C(7, 3)

We can prove that C(2, 2) + C(3, 2) + C(4, 2) + C(5, 2) + C(6, 2) = C(7, 3) in two ways.

Proof using Pascal’s formula C(n, r) = C(n − 1, r − 1) + C(n − 1, r)

C(7, 3) = C(6, 2) + C(6, 3)
= C(6, 2) + C(5, 2) + C(5, 3)
= C(6, 2) + C(5, 2) + C(4, 2) + C(4, 3)
= C(6, 2) + C(5, 2) + C(4, 2) + C(3, 2) + C(3, 3)

But C(3, 3) = C(2, 2) = 1

Therefore, C(7, 3) = C(6, 2) + C(5, 2) + C(4, 2) + C(3, 2) + C(2, 2)

Combinatorial proof

C(7, 3) represents the number of committees of 3 people that can be selected
from 7 people: A, B, C, D, E, F, and G. 

Select a single person, say A. If A is on the committee, the other 2 committee
members must be chosen from the remaining 6 people; there are C(6, 2) ways
to do this. 

1 + 3 + 6 + 10 + 15 = 35

1 + 5 + 15 = 21
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This leaves us with the committees that do not contain A. Consider the
committees that contain B. The other 2 committee members must be chosen
from the remaining 5 people; there are C(5, 2) ways to do this.

This leaves us with the committees that do not contain A or B. Consider the
committees that contain C. The other 2 committee members must be chosen
from the remaining 4 people; there are C(4, 2) ways to do this.

This leaves us with the committees that do not contain A or B or C. Consider
the committees that contain D. The other two committee members must be
chosen from the remaining 3 people; there are C(3, 2) ways to do this.

This leaves us with the committees that do not contain A or B or C or D. There
is only 1 possible committee: the one containing E, F, and G. Observe that if we
choose any member, say E, the other two committee members must be chosen
from the remaining 2 people in C(2, 2) ways, or 1 way. 

Since these 5 possibilities are mutually exclusive and there are no other
possibilities, the number of ways to choose the committee is
C(6, 2) + C(5, 2) + C(4, 2) + C(3, 2) + C(2, 2) . 
Thus, C(2, 2) + C(3, 2) + C(4, 2) + C(5, 2) + C(6, 2) = C(7, 3)

Draw Pascal’s triangle to the 10th row. Refer to the triangle to complete these exercises.

1. Use Pascal’s triangle to evaluate each of the following.

a) C(0, 0) b) C(3, 2) c) C(5, 3)

d) C(6, 3) e) C(9, 3) f) C(10, 7)

2. Knowledge/Understanding State another expression in the form C(n, r)
that is equal to each of the following.

a) C(7, 5) b) C(9, 4) c) C(11, 7) d) C(20, 6)

A

Exercises7.1

• Does this combinatorial argument apply only to the partial sums of
diagonal 2, or can it also be applied to the partial sums of other
diagonals? Explain. 

• There are many interesting patterns in the diagonals of Pascal’s triangle.
You will explore and prove these patterns throughout the chapter.

Something to Think About
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e) C(4, 2) + C(4, 3) f) C(6, 5) + C(6, 6) g) C(11, 8) + C(11, 9)

h) C(20, 6) + C(20, 7)

3. Some rows in Pascal’s triangle contain an odd number of entries. Other rows
contain an even number of entries. How do you know whether the number
of entries in a given row is odd or even? Explain.

4. In any given row of Pascal’s triangle, explain why the numbers increase
toward the middle and then decrease towards the end.

5. In exercise 7 of page 315, you wrote some values of P(n, r) in a triangular
pattern. Explain why this triangle is not as useful as Pascal’s triangle.

6. a) What is the second number in the 50th row of Pascal’s triangle?

b) How can you determine the second number in any row of Pascal’s
triangle? Explain.

7. Redo the numerical proofs on pages 343 and 344 using factorials.

8. Prove that C(7, 5) = C(7, 2) in these two ways:

a) numerically, using factorials

b) by reasoning, using the meaning of combinations

9. Prove the symmetrical pattern in Pascal’s triangle, C(n, r) = C(n, n − r),
in these two ways:

a) algebraically, using factorials to show that the two expressions are equal

b) by reasoning, using the meaning of combinations

10. Prove that C(7, 5) = C(6, 4) + C(6, 5) in these two ways:

a) numerically, using factorials

b) by reasoning, using the meaning of combinations

11. Prove Pascal’s formula, C(n, r) = C(n − 1, r − 1) + C(n − 1, r) , in these 
two ways:

a) algebraically, using factorials

b) by reasoning, using the meaning of combinations

12. Communication Explain in these two ways why the numbers in the first
diagonal of Pascal’s triangle are the natural numbers:

a) using the formula for C(n, r)

b) using the meaning of combinations

B
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13. Application In each pinball situation shown, a ball is equally likely to fall
to the left or to the right after hitting a divider. How many different paths are
there to each exit? 

14. In any pinball situation similar to those in exercise 13, explain why the total
number of paths from top to bottom is a power of 2.

15. In each pinball situation below, determine the number of different paths a
ball could take when it falls from top to bottom. Explain.

16. On a coordinate grid, visualize starting at (0, 0) and using a pencil  
to move to any point in the first quadrant according to these rules:

• You must always move along the grid lines, without taking your
pencil off the paper.

• You must always move either up or to the right.

a) How many different ways can you move to each point?
i) (1, 0), (0, 1)

ii) (2, 0), (1, 1), (0, 2)
iii) (3, 0), (2, 1), (1, 2), (0, 3)
iv) (4, 0), (3, 1), (2, 2), (1, 3), (0, 4)

b) Explain why the results of part a are the numbers in Pascal’s triangle.

o

a) b)

c) d)

Exit 1 2 3 4 5 6Exit 1 2 3 4 5

Exit 1 2 3 Exit 1 2 3 4

a) b)
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17. The sum of the first 4 terms in diagonal 3 of Pascal’s
triangle is entry 4 in row 7. 

a) Express this relationship using combinatorial
notation.

b) Explain this relationship using a combinatorial
model.

18. On pages 345 and 346, we looked at the partial sums
of the second diagonal of Pascal’s triangle. This same
sequence of numbers occurs in a diagonal that runs
the other way, from left to right. 

a) Express this relationship using combinatorial
notation.

b) Explain this relationship.

19. The diagram at the right shows a regular hexagon 
and its diagonals.

a) How many line segments are on the diagram?

b) How many of these line segments are diagonals?

20. Thinking/Inquiry/Problem Solving

a) How many interior diagonals are there in a regular polygon with 
20 sides? Explain.

b) What is the general formula for the number of interior diagonals in a
regular polygon with n sides? Explain.

21. a) Add the numbers in each row of Pascal’s triangle from row 0 to row 6.
What do you notice?

b) What does the sum of the numbers in the 5th row represent, in terms of
choosing items from a set of 5?

c) Explain why the sum of the numbers in part b is 25.

d) Explain why the sum of the numbers in the nth row is 2n.
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You already know how to expand the square of a binomial:

(a + b)2 = a2 + 2ab + b2

When we expand other powers of a + b, a number of patterns emerge.
These patterns can be generalized to derive a formula for the expansion of
(a + b)n for any natural number n. 

(a + b)0 = 1

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4

(a + b)5 = a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

1. Find as many patterns as you can in the results. Describe each pattern.

2. Predict the expansion of (a + b)6.

a) How many terms are in the expansion?

b) What is the exponent of a in the first term? What is the exponent of a

Investigation

Patterns in Binomial Powers

The Binomial Theorem7.2
350 CHAPTER 7 THE BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

in the last term? What happens to the exponent of a from term to
term?

c) What is the exponent of b in the first term? What is the exponent of b in
the last term? What happens to the exponent of b from term to term?

d) In any term, what is the sum of the exponents of a and b?

e) What are the coefficients of the terms in the expansion? How do
you know?

f) Write the expansion of (a + b)6.

3. Predict each expansion.

a) (a + b)7 b) (a + b)8

4. a) How is the expansion of (a − b)2 similar to the expansion of
(a + b)2? How is it different?

b) Use the expansions of (a + b)3, (a + b)4, and (a + b)5. Predict the
expansions of (a − b)3, (a − b)4, and (a − b)5.



In the Investigation, you discovered that the coefficients in the expansion of
(a + b)n are numbers in the nth row of Pascal’s triangle. For this reason, the
combinatorial coefficients in Pascal’s triangle are also called binomial
coefficients.

We can use combinations to explain why the binomial coefficients appear in
Pascal’s triangle.

For example, consider the expansion of (a + b)2.

(a + b)2 = (a + b)(a + b)
= aa + ab + ba + bb
= a2 + 2ab + b2

➀

➁

Observe that:

• Each term in ➁ is the product of 2 factors. In each term, either an a or a b is taken 
from each binomial factor in ➀ .

• The first term is a2, which is formed by choosing the a from both binomial 
factors.

• The second term contains ab, and is formed by choosing the a from one 
factor and the b from the other factor. Since there are 2 ways to do this,
the second term is 2ab.

• The third term is b2, which is formed by choosing the b from both binomial 
factors.

Hence, (a + b)2 = a2 + 2ab + b2

The coefficients are the numbers in the 2nd row of Pascal’s triangle. 

We can use similar reasoning to expand a binomial power such as (a + b)4.

(a + b)4 = (a + b)(a + b)(a + b)(a + b)
= aaaa + aaab + aaba + aabb + abaa + abab + abba

+ abbb + baaa + baab + baba + babb + bbaa + bbab
+ bbba + bbbb

= a4 + 4a3b + 6a2b2 + 4ab3 + b4

• Each term is the product of 4 factors. In each term, an a or a b is taken 
from each binomial factor.
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(a + b)0 =
(a + b)1 =
(a + b)2 =
(a + b)3 =

(a + b)4 =
(a + b)5 =

1

a + b

a2 + 2ab + b2

a3 + 3a2b + 3ab2 + b3

a4 + 4a3b + 6a2b2 + 4ab3 + b4

a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

Binomial expansion Coefficients of expansion

7.2 THE BINOMIAL THEOREM 351



352 CHAPTER 7 THE BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

• The first term is a4. It is formed by choosing the a from each of the 4 binomial 
factors. There is only one way to do this.

• The second term contains a3b. It is formed by choosing the b from any one of 
the 4 binomial factors and the three a’s from the remaining 3 factors. The b can 
be chosen in C(4, 1) ways, and for each way, the three a’s can be chosen in only 
1 way. Hence, the coefficient of a3b is 4, and the second term is 4a3b.

• The third term contains a2b2. It is formed by choosing b from any two of the 
4 binomial factors, and a from the remaining 2 factors.
The 2 b’s can be selected in C(4, 2) ways, and for each of these ways, the two a’s 
can be chosen in only 1 way. Hence, the coefficient of a2b2 is 6, and the third 
term is 6a2b2.

• Similarly, the fourth term is 4ab3, and the fifth term is b4.

This simplifies to (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4.
The coefficients are the numbers in the 4th row of Pascal’s triangle.

We can apply this reasoning to obtain the expansion of any binomial power of
the form (a + b)n, where n is a natural number. This is the binomial theorem. A
combinatorial proof using the reasoning on page 351 and above has been left to
the exercises (see exercise 7). An alternate proof is given in Section 7.5. 

• The coefficients in the expansion of (a + b)4 can be expressed in terms
of the possible number of ways to choose the number of b’s in the terms
of the expansion. Could we have counted the number of ways to choose
different numbers of a’s instead? Explain.

Something to Think About

The Binomial Theorem

For any natural number n and all real numbers a and b:

(a + b)n = C(n, 0)an + C(n, 1)an −1b + C(n, 2)an −2b2 + C(n, 3)an −3b3 + . . .

+ C(n, r)an − rbr + . . . + C(n, n − 1)abn −1 + C(n, n)bn

Take Note

Therefore, (a + b)4 = C(4, 0)a4 + C(4, 1)a3b + C(4, 2)a2b2 + C(4, 3)ab3 + C(4, 4)b4

      0 b’s         1 b          2 b’s             3 b’s             4 b’s
Number of ways to choose this many b’s
from 4 factors (a + b)
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Expand.

a) (x + 1)6 b) (2x − 3)3

Solution

a) Use the binomial theorem. Substitute a = x , b = 1, and n = 6.

(x + 1)6 = C(6, 0)x6 + C(6, 1)x5(1) + C(6, 2)x4(1)2 + C(6, 3)x3(1)3

+ C(6, 4)x2(1)4 + C(6, 5)x(1)5 + C(6, 6)(1)6

= x6 + 6x5 + 15x4 + 20x3 + 15x2 + 6x + 1

b) Use the binomial theorem. Substitute a = 2x, b = −3, and n = 3.

(2x − 3)3 = (2x + (−3))3

= C(3, 0)(2x)3 + C(3, 1)(2x)2(−3) + C(3, 2)(2x)(−3)2 + C(3, 3)(−3)3

= 8x3 + 3(4x2)(−3) + 3(2x)(9) − 27

= 8x3 − 36x2 + 54x − 27

Find the coefficient of x3y5 in the expansion of (x + 2y)8 .

Solution

(x + 2y)8 is the product of 8 factors of (x + 2y) .

The term x3y5 is formed by choosing 2y from any five of 8 binomial factors,
and x from the remaining 3 factors.

The five 2y’s can be selected in C(8, 5) ways, and for each of these ways, the
three x’s can be chosen in only 1 way.

Thus, the required term is:

C(8, 5)x3(2y)5 = 56x3(32y5)

= 1792x3y5

We can solve Example 2 in another way.

In the expansion of (a + b)n, the term containing br is called the general term of
the expansion. Notice that this term is the (r + 1)th term of the expansion. 

(a + b)n = C(n, 0) an + C(n, 1)an − 1b + C(n, 2)an − 2b2 + … + C(n, r) an − rbr + … + C(n, n −1)abn − 1 + C(n, n)bn

t1 t2 t3 … tr + 1 … tn tn + 1

Example 2

Example 1



In Example 2, the general term of (x + 2y)8 is:

tr +1 = C(8, r)x8 − r(2y)r

= C(8, r)(2)rx8 − ryr

The term x3y5 corresponds to r = 5. Thus, the required term is:

t6 = 56(32)x3y5

= 1792x3y5

We can use the general term to find a particular term in a binomial expansion
without writing the entire expansion.

Determine the 7th term in the expansion of (x − 2)10.

Solution

The general term is tr +1 = C(10, r)(x)10 − r(−2)r.

To determine t7, substitute 6 for r.

t7 = C(10, 6)(x)4(−2)6

= 210x4(64)

= 13 440x4

1. Expand using Pascal’s triangle. Simplify each term.

a) (a + 2)3 b) (y − 5)4 c) (4t + 1)5

d) (x − y)3 e) (2a + b)4 f) (x − 7)5

2. a) Explain how the term a5b3 is formed in the expansion of (a + b)8.

b) What is the coefficient of a5b3?

A

Exercises7.2

Example 3

The General Term of a Binomial Expansion

The general term in the expansion of (a + b)n is:

tr +1 = C(n, r)an − rbr

Take Note
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3. In the binomial expansion of (a + b)n, a term involving a3b4 occurs.

a) What is the value of n?

b) What is the coefficient of a3b4?

c) Which term in the expansion is this?

4. In the expansion of (a + b)6, explain why the coefficient of a4b2 is the same
as the coefficient of a2b4.

5. a) How many terms are there in the expansions of (a + b)9 and (a + b)10?

b) Which expansion in part a has one middle term? Which expansion has
two middle terms?

c) When does the expansion of (a + b)n have one middle term? When does it
have two middle terms?

6. Communication Use the reasoning on pages 351 and 352 to explain the
expansion of (a + b)3.

7. Use the reasoning on pages 351 and 352 to give a combinatorial proof of 
the binomial theorem.

8. Expand using the binomial theorem. Simplify each term. 

a) (x + 2)6 b) (x − 3)4 c) (1 + x2)6 d) (2 − x)5

e) (a − 2b)4 f) (2a + 3b)3 g)
(

x + 1
x

)5
h) (3a + 2b2)5

9. Write the first four terms in each expansion. Simplify each term.

a) (1 +
√

x)10 b) (x + 2)12 c) (2 − x)8 d) (1 − 2x)9

10. Knowledge/Understanding Find the first three terms and the 7th term in
the expansion of (a + 2b)12. Simplify.

11. Determine the indicated term in each expansion.

a) the 8th term in the expansion of (x − 2)10

b) the 4th term in the expansion of (x + 5y)8

c) the 10th term in the expansion of (1 − 2a)12

d) the 11th term in the expansion of (2a3 + 1)13

e) the middle term in the expansion of (1 − x2)8

12. Find the coefficient of x2y6 in the expansion of 
(

2x − y
2

)8
.

13. Find the coefficient of x3 and of x6 in each expansion.

a) (1 − 3x)8 b) (1 + 2x)12 c) (1 − x2)10

B

7.2 THE BINOMIAL THEOREM 355



356 CHAPTER 7 THE BINOMIAL THEOREM AND MATHEMATICAL INDUCTION

14. In the expansion of 
(

x + 1
x2

)6
, determine:

a) the constant term

b) the coefficient of x−6

c) whether there is a term involving x4

Explain.

15. Expand and simplify.

a) (x + y)4 + (x − y)4 b) (x + y)4 − (x − y)4

16. Application Use the binomial theorem to expand the trinomial
(a + b + c)3 .

17. a) In Example 1a, the sum of the coefficients in the expansion of (x + 1)6 is
1 + 6 + 15 + 20 + 15 + 6 + 1 = 64, or 26. Use the binomial theorem to
prove this result. 

b) Prove that, in general, the sum of the coefficients in the expansion of
(x + 1)n is 2n.

18. Thinking/Inquiry/Problem Solving

a) Expand (1 − 2x)3 and 
(

1 + 1
x

)5
.

b) Find, in the expansion of (1 − 2x)3
(

1 + 1
x

)5
:

i) the constant term
ii) the coefficient of x

19. When the terms of the expansion of (x2 + 1)n are written in ascending
powers of x, the coefficient of the third term is 9316. Determine n.

20. Find the coefficient of x17 in the expansion of (1 + x5 + x7)20.

21. In the binomial expansion of (1 + x)n , the coefficients of the fifth, sixth, and
seventh terms are consecutive terms of an arithmetic sequence. Determine
the first three terms of the expansion.

22. The first three terms of the expansion of (1 + ax + bx2)4 are 1, 8x, and 32x2

respectively. Determine a and b.

C

In the constant
term, the exponent
of x is 0.



In mathematics, we often use symbols to shorten expressions 
that are tedious to write. To express the sum of the squares 
of the first 10 natural numbers, we write 

1 + 4 + 9 + … + 100

to avoid listing all 10 terms. We can abbreviate this 
expression even further by using the summation symbol, Σ.

The series is a sum of squares. It can be rewritten as:

12 + 22 + 32 + … + 102

Each term of the series is of the form k2, where k takes,
in turn, the values 1, 2, 3, … , 10. Therefore, we write:

The sum of … 
10∑

k =1

k2 … all numbers of the form k2

… for integral values of k from 1 to 10.

The symbol Σ is the capital Greek letter sigma, which
corresponds to S, the first letter in the word “sum”. For 
this reason, this method of representing a series is called 
sigma notation.

Sigma Notation7.3

Sophie Germain (1776–1831)
Born: Paris, France

Germain taught herself while her
parents slept because they
disapproved of her passion for
mathematics. Although there was a
mathematical and scientific academy
in Paris, women were not allowed 
to enrol. Germain obtained lecture
notes for several of the courses and
studied from them. She sent a paper
to a professor using a pseudonym.
The professor was amazed that the
author was a woman and became
her mentor.
Germain's major contribution to
mathematics was in number theory.
She also researched vibrations of
elastic surfaces for which she won 
a contest sponsored by the French
Academy of Sciences.
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The variable k under the Σ sign, and in the expression after it, is called the
index of summation. Any letter not used elsewhere can be used for the index 
of summation. The numbers 1 and 10 are the limits of the summation. They
indicate that k is to take every integer value from 1 to 10. 

When we write out a series that is expressed using sigma notation, we are
writing the series in expanded form.

Write each summation in expanded form.

a)
4∑

k =1

(3k − 2)

b)
10∑

j =5

jx j

Example 1
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Solution

a)
4∑

k =1

(3k − 2)

Substitute values of k from 1 to 4 in the expression 3k − 2 and add the results.
4∑

k =1

(3k − 2) = [3(1) − 2] + [3(2) − 2] + [3(3) − 2] + [3(4) − 2]

= 1 + 4 + 7 + 10

b)
10∑

j =5

jx j

Substitute values of j from 5 to 10 in the expression jx j and add the results.
10∑

j =5

jx j = 5x5 + 6x6 + 7x7 + 8x8 + 9x9 + 10x10

The expression following the Σ sign represents the general term of the series. If
a series is arithmetic or geometric, we use the formulas for the general term that
were developed in grade 11.

Write the following series using sigma notation.
a) 3 + 9 + 15 + 21 + 27

b) 1 + 2 + 4 + 8 + 16 + 32 + 64

Solution

a) 3 + 9 + 15 + 21 + 27

This is an arithmetic series with a = 3 and d = 6.

The general term is tn = a + (n − 1)d
= 3 + (n − 1)(6)
= 6n − 3

Since there are 5 terms, the series can be written as 
5∑

k =1

(6k − 3).

b) 1 + 2 + 4 + 8 + 16 + 32 + 64

This is a geometric series with a = 1 and r = 2.

The general term is tn = ar n −1

= 1 × 2n −1

= 2n −1

Since there are 7 terms, the series can be written as 
7∑

k =1

2k −1.

Example 2
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A series can be written using sigma notation in more than one way. For example,
the series in Example 2b is a sum of powers of 2:

1 + 2 + 4 + 8 + 16 + 32 + 64 . It can be rewritten as:

20 + 21 + 22 + 23 + 24 + 25 + 26

Each term in the series is of the form 2k , where k starts at 0 and ends at 6.

Thus, the series can be written as 
6∑

k =0

2k.

Sometimes, we wish to find the general term of a series that is neither
arithmetic nor geometric.

Write the following series using sigma notation.
2

1 • 3
+ 4

3 • 5
+ 6

5 • 7
+ ... + 20

19 • 21

Solution

The numerators form the arithmetic sequence 2, 4, 6, … , 20. 
The sequence can be rewritten as 2(1), 2(2), 2(3), … , 2(10). 
This is a sequence of 10 terms, each of the form 2k, where k starts at 1 and
ends at 10.

In each denominator, the numbers to the left of the dot are 1 less than the
numerator, while the numbers to the right of the dot are 1 greater than the
numerator. Thus, the denominators are of the form (2k − 1)(2k + 1).

Thus, the series can be written as 
10∑

k =1

2k
(2k − 1)(2k + 1)

.

The upper limit of a summation can be the variable n instead of a number.

• How else could we have determined the general term for the series in
Example 3?

Something to Think About

The dots in the
denominator of
each term of the
series indicate
multiplication.

Example 3



Write the binomial theorem using sigma notation.

Solution

The binomial theorem states:
(a + b)n = C(n, 0)an + C(n, 1)an −1b + C(n, 2)an −2b2 + . . . + C(n, r) an − rbr + . . .

+ C(n, n − 1)abn −1 + C(n, n)bn

The general term is C(n, r) an − rbr , where 0 ≤ r ≤ n. 

Thus, (a + b)n =
n∑

r =0

C(n, r) an − rbr

1. Write the series in expanded form.

a)
5∑

k =1

(k + 3) b)
5∑

j =1

1
j

c)
5∑

m =1

3m −1

d)
5∑

j =1

(9 − 2j) e)
5∑

j =1

(−1) j f)
5∑

j =1

3(2 j)

2. Write each series using sigma notation.

a) 1 + 2 + 3 + . . . + 100 b) 4 + 4 + 4 + 4 + 4 + 4 + 4

c) 13 + 23 + 33 + 43 + 53 d) 1
2

+ 1
3

+ 1
4

+ 1
5

e) 33 + 44 + 55 + . . . + 1212 f) a + a2 + a3 + . . . + a12

3. Which sigma notation is correct for each series?

a) 5 + 7 + 9 + 11 + 13 b) −1 + 1 + 3 + 5 + 7

c) 1 + 4 + 7 + 10 + 13 d) 4 + 9 + 14 + 19 + 24

i)
5∑

k =1

(3k + 1) ii)
5∑

k =1

(2k − 3) iii)
5∑

k =1

(3k − 2)

iv)
5∑

k =1

(2k + 3) v)
5∑

k =1

(3 − 2k) vi)
5∑

k =1

(5k − 1)

4. Write each series using sigma notation.

a) 2 + 4 + 6 + 8 + 10 + 12 + 14 b) 2 + 5 + 8 + 11 + 14 + 17

c) 15 + 11 + 7 + 3 − 1 d) 4 + 20 + 100 + 500 + 2500

e) 1 − 1 + 1 − 1 f) 3 − 6 + 12 − 24 + 48

A

Exercises7.3

Example 4
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5. Knowledge/Understanding Write each series in expanded form.

a)
6∑

k =1

(k + 4) b)
5∑

k =1

(−2)k c)
6∑

s =1

5(2)s −1

6. Write each series in expanded form.

a)
4∑

k =1

ak b)
4∑

k =1

kak c)
4∑

k =1

akk d)
4∑

k =1

(−ak)k

7. Write each series using sigma notation.

a) 3 + 9 + 15 + . . . + 93 b) 18 + 13 + 8 + . . . − 32

c) −2 + 2 + 6 + . . . + 46 d) 1 + 1
2

+ 1
4

+ . . . + 1
256

e) 3 + 6 + 12 + . . . + 768 f) 2 − 6 + 18 − . . . + 1458

8. Write each series in expanded form and simplify.

a)
8∑

j =3

(2j − 2) b)
7∑

k =1

(x − 1)k

k
c)

5∑
i =0

C(5, i)

d)
6∑

i =2

C(2i − 1, i) e)
7∑

j =3

(−2)2j −3 f)
5∑

k =1

1
(2k − 1)(2k + 1)

9. Write each series using sigma notation.

a) 1 • 2 + 2 • 3 + 3 • 4 + . . . + 99 • 100

b) 12 + 32 + 52 + . . . + 492

c) 1
1 • 3

+ 1
2 • 4

+ 1
3 • 5

+ . . . + 1
10 • 12

d) C(4, 0)a4 + C(4, 1)a3b + C(4, 2)a2b2 + C(4, 3)ab3 + C(4, 4)b4

e) 1 − 3 + 5 − . . . + 29

f) 1 • 2 + 2 • 22 + 3 • 23 + . . . + 8 • 28

g) 1 + 22 + 43 + 84 + 165 + 326 + 647

h) a + (a + d) + (a + 2d) + . . . + [a + (n − 1)d]

i) a + ar + ar2 + . . . + arn −1

10. Communication Π , the capital Greek letter P, is the first letter in the word
“product”. Explain what the Π notation could mean. Support your
explanation with examples.

B
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11. Application  Using the diagram at the right,
write each set of numbers in combinatorial
notation and use sigma notation
to express their sum. 

a) the numbers in the 4th row 

b) the first 8 numbers in the 1st diagonal

c) the first 5 numbers in the 2nd diagonal 
that runs from left to right.

d) the first n numbers in the 3rd diagonal

12. Thinking/Inquiry/Problem Solving

a) Use sigma notation to represent the sum of the numbers in any given row
of Pascal’s triangle.

b) Use sigma notation to express the sum of all the numbers in rows 0 to 8
of Pascal’s triangle. 

13. Use sigma notation to write the following sum.

12 + (2 + 3)2 + (4 + 5 + 6)2 + (7 + 8 + 9 + 10)2 +
(11 + 12 + 13 + 14 + 15)2 + . . . + (172 + 173 + . . . + 190)2

C

1

1

1

1

1

1

1

1

2

3

4

5

6

1

3

6

10

15

1

4

10

20

1

5

15

1

61

1

18285670562881

72135352171

1 1
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Throughout this book, we have used a variety of methods to prove results. In
this section, you will learn a new method of proof that can be used to prove that
a result is true for all natural numbers. The nature of this method of proof is
illustrated in the following example.

Suppose we want to prove that 1 + 3 + 5 + 7 + . . . + (2n − 1) = n2 for all
natural numbers, n. 

It is natural to verify the result for a few values of n.

Let Sn represent the sum of the first n terms of the series.

When n = 1, S1 = 1, or 12

When n = 2, S2 = 1 + 3
= 4, or 22

When n = 3, S3 = 1 + 3 + 5
= 9, or 32

We can continue and add the first 4 terms to determine S4. A more efficient
method is to use the fact that we already know the sum of the first 3 terms. 
To find S4, add S3 to the 4th term.

When n = 4, S4 = S3 + t4
= 9 + 7
= 16, or 42

Mathematical Induction7.4
Since we now know the sum of the first 4 terms, we can determine S5 in the
same way. We can extend these calculations as far as we please to verify the
result for any value of n. But we cannot do this for all values of n. A proof for
all values of n requires that the above calculations be generalized. We can do
this as follows.

Suppose we have already proved that Sk = k2 for some value of k.
The following calculation proves that the result is true for the next value of k;
that is, it shows that Sk +1 = (k + 1)2.

Sk +1 = Sk + tk +1

= k2 + (2(k + 1) − 1)
= k2 + 2k + 1
= (k + 1)2

Consider what we have done.

• We verified that the formula Sn = n2 holds up to S4.

• Then, we showed that if the formula holds for Sk , then it also holds for Sk +1.
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The last statement implies that since the formula holds for S4, it must also 
hold for S4 +1, or S5. Since it holds for S5, it must also hold for S5 +1, or S6.
Since we can continue this reasoning for all natural numbers, we have 
proved that Sn = n2 for all natural numbers n.

This method of proof is called the Principle of Mathematical Induction. Notice
that the proof is a two-step process.

The following analogy illustrates how mathematical induction works. 

Suppose we line up a series of dominoes numbered 1, 2, 3, 4, … with equal
spacing in a straight line as follows.

Suppose the dominoes are lined up in such a way that when one domino falls,
the next one also falls, that is, when domino k falls, it knocks down domino
k + 1 too.

Thus, if domino 1 is pushed down, it will knock down domino 2, which will
knock down domino 3, and so on. Eventually, all the dominoes fall over.

1 2 3 4 5 6 7 8

…

…

1 2 3 4 5 6 7 8

…

…

The Principle of Mathematical Induction
A result involving natural numbers is true for all natural
numbers if both of the following are true:

1. The result is true when n = 1.
2. If the result is true when n = k , then it is true for n = k + 1.

Take Note

We write n ∈∈∈ N for
“n is a natural
number.”



Use the Principle of Mathematical Induction to prove that

12 + 22 + 32 + . . . + n2 = n(n + 1)(2n + 1)
6

for all n ∈ N.

Solution

Let Sn denote the sum of the first n terms of the above series. 
Use the Principle of Mathematical Induction.

Step 1: Verify that Sn is true when n = 1.

When n = 1, S1 = 12 = 1, and 1(1 + 1)(2(1) + 1)
6

= 1

Therefore, the result is true when n = 1.

Step 2: Given that Sn is true when n = k, prove that it is true when n = k + 1.

Given: Sk = k(k + 1)(2k + 1)
6

Required to prove: Sk +1 = (k + 1)(k + 2)(2(k + 1) + 1)
6

= (k + 1)(k + 2)(2k + 3)
6

Proof: Sk +1 = Sk + tk +1

= k(k + 1)(2k + 1)
6

+ (k + 1)2

= k(k + 1)(2k + 1) + 6(k + 1)2

6

= (k + 1)[k(2k + 1) + 6(k + 1)]
6

= (k + 1)[2k2 + k + 6k + 6]
6

= (k + 1)[2k2 + 7k + 6]
6

= (k + 1)(k + 2)(2k + 3)
6

Thus, Sk +1 is true if Sk is true. 

Therefore, by the Principle of Mathematical Induction,

12 + 22 + 32 + . . . + n2 = n(n + 1)(2n + 1)
6

for all n ∈ N

Prove that 3 + 6 + 12 + 24 + . . . + 3(2n −1) = 3(2n −1) for all n ∈ N.

Solution

Let Sn denote the sum of the first n terms of the above series.
Use the Principle of Mathematical Induction.

Example 2

Example 1
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Step 1: When n = 1, S1 = 3, and 3(21 − 1) = 3
Therefore, the result is true when n = 1.

Step 2: Given: Sk = 3(2k − 1)
Required to prove: Sk +1 = 3(2k +1 − 1)
Proof: Sk +1 = Sk + tk +1

= 3(2k − 1) + 3(2k)

= 3(2k) + 3(2k) − 3

= 3(2k + 2k − 1)

= 3(2 × 2k − 1)

= 3(2k +1 − 1)
Thus, Sk +1 is true if Sk is true.

Therefore, by the Principle of Mathematical Induction,
3 + 6 + 12 + 24 + . . . + 3(2n −1) = 3(2n −1) for all n ∈ N

In the preceding examples, the formula to be proved was given in the statement
of the problem. In the next example, the formula is not given.

Establish a formula for the sum of the first n terms of this series and prove it
using mathematical induction.

1
1 • 3

+ 1
3 • 5

+ 1
5 • 7

+ . . . + 1
(2n − 1)(2n + 1)

Solution

Since no formula is given, calculate the first few partial sums and see if a
pattern emerges.

Let Sn denote the sum of the first n terms of the above series.

S1 = 1
3

S2 = 1
3

+ 1
15

= 6
15

, or 2
5

S3 = S2 + 1
35

= 2
5

+ 1
35

= 15
35

, or 3
7

From these examples, it appears that Sn = n
2n + 1

.

Now prove this using the Principle of Mathematical Induction.
Step 1: The result is true when n = 1, as shown above.

Example 3



Step 2: Given: Sk = k
2k + 1

Required to prove: Sk +1 = k + 1
2(k + 1) + 1

= k + 1
2k + 3

Proof: Sk +1 = Sk + tk +1

= k
2k + 1

+ 1
(2k + 1)(2k + 3)

= k(2k + 3) + 1
(2k + 1)(2k + 3)

= 2k2 + 3k + 1
(2k + 1)(2k + 3)

= (2k + 1)(k + 1)
(2k + 1)(2k + 3)

= k + 1
2k + 3

Thus, Sk +1 is true if Sk is true.

Therefore, by the Principle of Mathematical Induction,
1

1 • 3
+ 1

3 • 5
+ 1

5 • 7
+ . . . + 1

(2n − 1)(2n + 1)
= n

2n + 1
for all n ∈ N

When we guessed the formula for the solution of Example 3, we used inductive
reasoning or induction. We then proved the formula using mathematical
induction. The following quotation from How to Solve It by George Polya
explains the difference between induction and mathematical induction.

This was done in Example 3. The result to be proved was discovered by
induction and proved by mathematical induction. To use mathematical
induction, we must know what assertion is to be proved. It may come from any
source, and it does not matter what the source is. In some cases, the source is
induction, that is, the assertion is found experimentally. 

Mathematical induction is a very powerful method of proof, but it can only be
used to solve certain kinds of problems:

• The statement to be proved must involve natural numbers.
• The statement to be proved must be known in advance. 

Induction is the process of discovering general laws by the observation 
and combination of particular instances. It is used in all sciences and in mathematics.
Mathematical induction is used in mathematics alone to prove theorems of a certain
kind. It is rather unfortunate that their names are similar because there is very little
logical connection between the two processes. There is, however, some practical
connection; we often use both methods together.
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1. In each expression below, the variable k represents a natural number.
Substitute k + 1 for k and simplify the expression.

a) k
k + 1

b) k
2k + 1

c) k + 1
k − 1

d) 2k − 1
3k − 1

e) 1
3

k(k + 1)(k + 2) f) 1
2

k(2k − 1)(2k + 1)

2. Communication On page 363, we used mathematical induction to prove
that 1 + 3 + 5 + 7 + . . . + (2n − 1) = n2 for all n ∈ N. Provide a geometric
proof of this result based on the diagram at the right.

3. To prove that a result is true using mathematical induction, both of the
conditions in the Take Note box on page 364 must be satisfied. 

a) Show that the formula 1 • 2 + 2 • 3 + 3 • 4 + . . . + n(n + 1) = n2 + 1 satisfies
condition 1 of the Principle of Mathematical Induction, but does not satisfy
condition 2.

b) Show that the formula 2 + 6 + 10 + . . . + 2(2n − 1) = 2n2 + 2 satisfies
condition 2 of the Principle of Mathematical Induction, but does not
satisfy condition 1.

c) What conclusion must we draw about the formulas in parts a and b? Explain.

4. Knowledge/Understanding Prove using the Principle of Mathematical
Induction for all n ∈ N.
2 + 4 + 6 + . . . + 2n = n(n + 1)

5. Prove using the Principle of Mathematical Induction for all n ∈ N.

a) 3 + 4 + 5 + . . . + (n + 2) = n(n + 5)
2

b) 3 + 7 + 11 + . . . + (4n − 1) = 2n2 + n

c) 1 + 2 + 4 + . . . + 2n −1 = 2n − 1

d) 1 + 4 + 7 + . . . + (3n − 2) = n(3n − 1)
2

6. Prove by mathematical induction for all n ∈ N.

a) 1 • 2 + 2 • 3 + 3 • 4 + . . . + n(n + 1) = 1
3

n(n + 1)(n + 2)

b) 4 + 14 + 30 + . . . + (3n2 + n) = n(n + 1)2

c) 1 • 1 + 2 • 2 + 3 • 4 + 4 • 8 + . . . + n(2n −1) = 1 + (n − 1)2n

d) 1
4 • 7

+ 1
7 • 10

+ 1
10 • 13

+ . . . + 1
(3n + 1)(3n + 4)

= n
4(3n + 4)

B

A
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7. The first diagonal of Pascal’s triangle consists of the
natural numbers. Recall that the partial sums of these 
numbers are found in the second diagonal. For example,
1 + 2 + 3 + 4 = 10 .

a) Write this partial sum using combinatorial notation.

b) Generalize the result of part a to determine a formula 
for the sum of the first n natural numbers.

c) Use mathematical induction to prove that your formula 
is correct.

8. Prove that your formula in exercise 7 is correct in two other ways.

a) Use the formula for the sum of an arithmetic series.

b) Give a geometric proof based on the diagram at the right.

9. Application  The natural numbers shown below are the triangular numbers.
They appear in the second diagonal of Pascal’s triangle.

a) Use Pascal’s triangle to determine a formula for the sum of the first n
triangular numbers.

b) Use mathematical induction to prove that your formula is correct.

10. a) Prove, by mathematical induction, that

13 + 23 + 33 + . . . + n3 =
[

1
2

n(n + 1)
]2

for all n ∈ N.

b) Use the result of part a. 
Determine 23 + 43 + 63 + . . . + (2n)3.

c) Use the result of parts a and b. 
Determine 13 + 33 + 53 + . . . + (2n + 1)3.

11. a) Prove, by mathematical induction, that  

12 + 32 + 52 + . . . + (2n − 1)2 = n(2n − 1)(2n + 1)
3

for all n ∈ N.

b) Suppose you had not been given the sum in part a. Explain how you
could have found the sum using the formula from Example 1 for the sum
of the first n squares.

12. Prove, by mathematical induction, that 
n∑

i =1

xi = xn +1 − x
x − 1

where x ≠ 1.

1 3 6 10

…

1

1

1

1

1

1

1

1

2

3

4

5

6

1

3

6

10

15

1

4

10

20

1

5

15

1
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13. Establish a formula for each series and prove it using mathematical
induction.

a)
n∑

k =1

1
(3k − 2)(3k + 1)

b)
n∑

k =1

1
(4k − 3)(4k + 1)

14. Establish a formula for each product and prove it using mathematical
induction.

a) (1 + 1)
(

1 + 1
2

)(
1 + 1

3

)
. . .

(
1 + 1

n

)

b)
(

1 − 1
2

)(
1 − 1

3

)(
1 − 1

4

)
. . .

(
1 − 1

n + 1

)

15. Prove, by mathematical induction, that 
1

1 • 2
+ 1

2 • 3
+ 1

3 • 4
+ . . . + 1

n(n + 1)
= n

n + 1
for all numbers n ∈ N.

16. Thinking/Inquiry/Problem Solving Establish a formula for
1 + 2 • 2! + 3 • 3! + . . . + n • n! and prove it using mathematical induction.

17. a) Use mathematical induction to prove the formula for the sum of n terms
of an arithmetic series with initial term a and common difference d.

a + (a + d) + (a + 2d) + . . . + [a + (n − 1)d] = n
2

[2a + (n − 1)d]

b) Give another proof of the result in part a.

18. a) Use mathematical induction to prove the formula for the sum of n terms
of a geometric series with initial term a and common ratio r.

a + ar + ar 2 + . . . + ar n −1 = a(r n − 1)
r − 1

, r ≠ 1

b) Give another proof of the result in part a.

19. Establish a formula for 1
2!

+ 2
3!

+ 3
4!

+ . . . + n
(n + 1)!

and prove it using
mathematical induction.

20. Prove that C(n, 0) + C(n, 2) + C(n, 4) + . . . + C(n, n) = 2n −1 for all even
numbers n ∈ N .

C
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In Section 7.4, we used mathematical induction to prove formulas for the sums
of series. We can also use mathematical induction in other types of problems.
The essential requirement is that the problem involves natural numbers.

Prove that n3 + 2n is divisible by 3 for all n ∈ N .

Solution

Let Pn be the statement n3 + 2n is divisible by 3.
Use the Principle of Mathematical Induction.

Step 1: When n = 1, n3 + 2n = 13 + 2(1) or 3, which is divisible by 3
Therefore, the result is true when n = 1.

Step 2: Given: k3 + 2k is divisible by 3.
Required to prove: (k + 1)3 + 2(k + 1) is divisible by 3.
Proof: (k + 1)3 + 2(k + 1)

= k3 + 3k2 + 3k + 1 + 2k + 2
= k3 + 3k2 + (2k + k) + 1 + 2k + 2
= (k3 + 2k) + (3k2 + 3k + 3)
= (k3 + 2k) + 3(k2 + k + 1) ➀

The expression k3 + 2k is divisible by 3 (given). The expression 3(k2 + k + 1)
has a common factor of 3 so it is divisible by 3.

Example 1

Applications of Mathematical Induction7.5
Therefore, expression ➀ is divisible by 3.

Thus, if Pk is true, then Pk +1 is true.

Therefore, by the Principle of Mathematical Induction, n3 + 2n is divisible by 3 for all n ∈ N .

Prove that 9n − 1 is divisible by 8 for all n ∈ N.

Solution

Let Pn be the statement 9n − 1 is divisible by 8.
Use the Principle of Mathematical Induction.

Step 1: When n = 1, 9n − 1 = 91 − 1 or 8, which is divisible by 8
Therefore, the result is true when n = 1.

Example 2
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Step 2: Given: 9k − 1 is divisible by 8.
Required to prove: 9k +1 − 1 is divisible by 8.
Proof: 9k +1 − 1

= 9k • 9 − 1
= 9k(1 + 8) − 1
= 9k + 8 • 9k − 1
= (9k − 1) + 8 • 9k ➀
The expression 9k − 1 is divisible by 8 (given).
The expression 8 • 9k has a factor of 8 so it is divisible by 8.
Therefore, expression ➀ is divisible by 8.

Thus, if Pk is true, then Pk +1 is true.

Therefore, by the Principle of Mathematical Induction, 9n − 1 is divisible by 8 for all n ∈ N.

In exercise 7 on page 355, you used a combinatorial approach to prove the binomial 
theorem. Here is an alternate proof that uses mathematical induction. Recall Pascal’s 
formula from Section 7.1 on page 345. You proved this formula in exercise 11 on page 347.

C(n, r) = C(n − 1, r − 1) + C(n − 1, r)

Proof using mathematical induction
Let Pn be the above statement.
Use the Principle of Mathematical Induction.

Step 1: When n = 1, (a + b)1 = a + b, and
1∑

r =0

C(1, r)a1 − rbr

= C(1, 0)a1 −0b0 + C(1, 1)a1 −1b1

= a + b

Therefore, the result is true when n = 1.

The Binomial Theorem

For all n ∈ N, (a + b)n =
n∑

r =0

C(n, r) a n − rbr .

• In Example 1, we wrote 3k as 2k + k; and in Example 2, we wrote
9k • 9 − 1 as 9k(1 + 8) − 1. Why did we do this? How did we know 
to do this? Explain.

Something to Think About
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Step 2: Given: (a + b)k =
k∑

r =0

C(k, r)ak − rbr

Required to prove: (a + b)k +1 =
k +1∑
r =0

C(k + 1, r)ak +1 − rbr

Proof: (a + b)k +1

= (a + b)(a + b)k

= a(a + b)k + b(a + b)k

= a
[
C(k, 0)ak + C(k, 1)ak −1b + C(k, 2)ak −2b2 + . . .

+ C(k, r)ak − rbr + . . . + C(k, k)bk
]

+ b
[
C(k, 0)ak + C(k, 1)ak −1b + C(k, 2)ak −2b2 + . . .

+ C(k, r)ak − rbr + . . . + C(k, k)bk
]

=
[
C(k, 0)ak +1 + C(k, 1)akb + C(k, 2)ak −1b2 + . . .

+ C(k, r)ak − r +1br + . . . + C(k, k)abk
]

+
[
C(k, 0)akb + C(k, 1)ak −1b2 + C(k, 2)ak −2b3 + . . .

+ C(k, r)ak − rbr +1 + . . . + C(k, k)bk +1
]

= C(k, 0)ak +1 + [C(k, 0) + C(k, 1)]akb + [C(k, 1) + C(k, 2)]ak −1b2 + . . .

+ [C(k, r − 1) + C(k, r)]ak − r +1br + . . . + C(k, k)bk +1

By Pascal’s formula, C(n, r) = C(n − 1, r − 1) + C(n − 1, r) .

Therefore,
C(k, 0) + C(k, 1) = C(k + 1, 1), C(k, 1) + C(k, 2) = C(k + 1, 2),

C(k, r − 1) + C(k, r) = C(k + 1, r) and so on

Also, C(k, 0) = C(k + 1, 0) and C(k, k) = C(k + 1, k + 1)

Therefore,

(a + b)k +1 = C(k + 1, 0)ak +1 + C(k + 1, 1)akb + C(k + 1, 2)ak −1b2 + . . .

+ C(k + 1, r)ak − r +1br + . . . + C(k + 1, k + 1)bk +1

=
k +1∑
r =0

C(k + 1, r) ak +1 − rbr

Thus, if Pk is true, then Pk +1 is true.

Therefore, by the Principle of Mathematical Induction,

(a + b)n =
n∑

r =0

C(n, r) an − rbr for all n ∈ N
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Use mathematical induction.

1. Knowledge/Understanding Prove that 4n − 1 is divisible by 3 for all n ∈ N.

2. Prove that n(n + 1)(n + 2) is divisible by 3 for all n ∈ N.

3. Prove that 32n − 22n is divisible by 5 for all n ∈ N.

4. Prove that 62n −1 + 1 is divisible by 7 for all n ∈ N.

5. a) Prove that n(n + 1) is divisible by 2 for all n ∈ N.

b) Use the result of part a to prove that n3 + 5n is divisible by 6.

6. Prove that x − y is a factor of xn − yn for all n ∈ N.

7. Prove that n3 + 6n2 + 2n
3

is a natural number for all n ∈ N.

8. Prove that 4 is a factor of 3n + 2n − 1 for all n ∈ N.

9. Prove that C(n + 2, 3) − C(n, 3) = n2 for all natural numbers n ≥ 3.

10. Communication As each group of business people arrives at a meeting,
each person shakes hands with all the other people present. 

a) Explain why if n people come to the meeting, then n(n − 1)
2

handshakes occur.

b) Prove the result in part a using mathematical induction.

11. Application  Prove that 5n − 4n is divisible by 9 for all even positive
integers n.

12. Prove that an + bn is divisible by a + b for all positive odd integers n.

13. Thinking/Inquiry/Problem Solving Prove that n distinct lines passing
through a point on a plane divide the plane into 2n regions.

14. Prove that the maximum number of points of intersection of n distinct lines 

in a plane is n(n − 1)
2

.

C

B

Exercises7.5

• Explain each step of the proof.

• How do we know that C(k, 0) = C(k + 1, 0) and C(k, k) = C(k + 1, k + 1)?

Something to Think About



Review Exercises

Pascal’s Triangle
• Pascal’s triangle is the following triangular number pattern.

• The rth number in the nth row of Pascal’s triangle is C(n, r) = n!
r!(n − r)!

where n = 0, 1, 2, … and 0 ≤ r ≤ n.

• C(n, r) = C(n, n − r)

• C(n, r) = C(n − 1, r − 1) + C(n − 1, r) (Pascal’s formula)

The Binomial Theorem
• For any natural number n,

Mathematics Toolkit
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(a + b)n =
n∑

r =0

C(n, r) an − rbr

= C(n, 0)an + C(n, 1)an −1b + C(n, 2)an −2b2 + . . .

+ C(n, r) an − rbr + . . . + C(n, n)bn

• The general term in the expansion of (a + b)n is tr +1 = C(n, r)an − rbr

Sigma Notation
• Sigma notation is a concise way to write a series.

• The sum a1 + a2 + a3 + . . . + an can be written in sigma notation as 
n∑

k =1

ak.

The Principle of Mathematical Induction
• A result involving natural numbers is true for all natural numbers if both of the following

are true:
1. The result is true when n = 1.

2. If the result is true when n = k , then it is true for n = k + 1.
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1. State another expression in the form C(n, r) that is equal to each of the
following.

a) C(7, 3) b) C(9, 5) + C(9, 6)

c) C(n, r) d) C(n − 1, r) + C(n − 1, r − 1)

2. Use the properties of Pascal’s triangle to evaluate each sum.

a) C(5, 0) + C(5, 1) + C(5, 2) + C(5, 3) + C(5, 4) + C(5, 5)

b) C(3, 3) + C(4, 3) + C(5, 3) + C(6, 3) + C(7, 3)

c) C(2, 2) + C(3, 2) + C(4, 2) + C(5, 2) + C(6, 2)

3. Visualize joining different numbers of points with line segments in all
possible ways. These diagrams show the line segments for 2, 3, 4, 5, and 
6 points.

a) Count the line segments on each diagram and record the results.

b) Compare the results of part a with Pascal’s triangle. Where are these
numbers found on Pascal’s triangle? Use combinations to explain why
these numbers in the triangle represent the numbers of line segments on
these diagrams.

c) What is the general formula for the number of line segments when there
are n points? Prove that your formula is correct.

4. a) Use Pascal’s triangle to expand (a + b)5.

b) Use Pascal’s triangle to find the coefficient of x5 in the expansion of
(x + y)8.

5. Expand each expression using the binomial theorem.

a) (x + 2)5 b) (2x − 3)4 c) (x2 − 4)3

6. Find the specified terms in each expansion.

a) (2 − x)7; the first 3 terms

b) (1 − 3x)9; the 5th term

c)
(

x3 − 1
x2

)10
; the constant term

d) (1 +
√

x)5; the two middle terms
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7. Find the coefficient of x7 in the expansion of (x + 2)9.

8. Find the coefficient of x3y4 in the expansion of (x − y)7.

9. Write each summation in expanded form.

a)
5∑

k =1

(k2 + 2) b)
5∑

k =1

(k + 2)2

c)
4∑

k =1

(−2)2k +1 d)
n∑

k =5

1
(k + 1)(k − 1)

10. Write each series using sigma notation.

a) 7 + 10 + 13 + . . . + 28

b) 2 + 1 + 1
2

+ 1
4

+ . . . + 1
32

c) 1 + 2 • 2! + 3 • 3! + 4 • 4! + . . . + 10 • 10!

d) 1 • 2 + 2 • 3 + 3 • 4 + . . . + 15 • 16

e) 1
4 • 7

+ 1
7 • 10

+ 1
10 • 13

+ . . . + 1
31 • 34

11. Prove by mathematical induction for all n ∈ N.

a) 2 + 6 + 10 + . . . + (4n − 2) = 2n2

b) 1 • 3 + 2 • 5 + 3 • 7 + . . . + n(2n + 1) = 1
6

n(n + 1)(4n + 5)

c) 1
2

+ 3
22 + 5

23 + . . . + 2n − 1
2n = 3 − 2n + 3

2n

12. Prove by mathematical induction for all n ∈ N.

a) 10n − 3n is divisible by 7.

b) 64 is a factor of 9n − 8n − 1.

c) 32n +1 + 52n −1 is divisible by 16.

13. a) Establish a formula for the sum of the first n terms of the series 
n∑

k =1

1
k(k + 1)

and prove it using mathematical induction.

b) Use the result of part a to evaluate 
100∑

k =50

1
k(k + 1)

.

14. Prove that x2n +1 + y2n +1 is divisible by x + y for all integers n ≥ 0.



Self-Test

1. Knowledge/Understanding

a) The entries in the 8th row of Pascal’s triangle are:
1    8    28    56    70    56    28    8    1
What are the entries in the 9th row of Pascal’s triangle?

b) Write the terms in the expansion of (a + b)8.

c) State another expression in the form C(n, r) that is equal to C(11, 6).

2. Communication Use the meaning of combinations to prove Pascal’s
formula: C(n, r) = C(n − 1, r − 1) + C(n − 1, r) .

3. Application Using the diagram at the right,
determine the number of ways in which the word
BINOMIAL can be spelled out starting at the letter
B and moving to an adjacent letter in any direction.

4. Write 2√
1

+ 3√
2

+ 4√
3

+ . . . + 11√
10

using sigma notation.

5. Write 
5∑

j =1

(2j − 1)2−j in expanded form.

B

1

N

O

1

N

O

M

N

O

M

I

O

M

I

A

LL

I I
6. Expand and simplify (2x3 − 5)3.

7. Determine the coefficient of a16b4 in the expansion of (a2 − b2)10.

8. Determine the middle terms in the expansion of (1 + 4x)7.

9. Thinking/Inquiry/Problem Solving Conjecture a formula for the product(
1 + 3

1

)(
1 + 5

4

)(
1 + 7

9

)
. . .

(
1 + 2n + 1

n2

)
and prove it using mathematical induction.

10. Prove that 7n + 4n is divisible by 11 for all odd positive integers n. 
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Performance Problems
for Discrete Mathematics

The problems in this section offer you the opportunity to solve some complex
Curriculum Expectations
By the end of this section you will:

• Solve complex problems and present the
solutions with clarity and justification.

• Solve problems of significance, working
independently, as individuals and in
small groups.

• Solve problems requiring effort over
extended periods of time.

• Demonstrate significant learning and the
effective use of skills in tasks such as
solving challenging problems,
researching problems, applying
mathematics, creating proofs, using
technology effectively, and presenting
course topics or extensions of course
topics.
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problems related to the topics you have studied. Some of these problems are
challenging. You may find it helpful to work with others, to share ideas and
strategies. You may be unable to complete a solution to some of the problems at 
the first attempt. Be prepared to research, to return to a problem again and again.



Focus on ... The Divider

Suppose we wish to determine the number of ways that 10 loonies 
can be distributed among 6 people: A, B, C, D, E, and F. Any distribution
is possible; for example, the first four people could receive 2 loonies each,
while the last two people receive 1 loonie each. Alternatively, one person
could receive all 6 loonies. 

We can represent the problem graphically by writing 10 Ls in a row. We
can then divide the Ls into 6 groups by inserting 5 dividing lines. Assume
the first group of Ls goes to A, the second group to B, the third group to
C, and so on. For example, in the representation:

A gets 2 loonies, B gets 1, C gets 4, D gets 0, E gets 0, and F gets 
3 loonies. 

We can represent other distributions by changing the position of the
dividers. Thus, the total number of possible distributions corresponds to
number of ways of arranging 10 Ls and 5 dividers. From Section 6.3, we
know that the number of ways to arrange 15 symbols, 10 of which are of
one kind and 5 of which are of another kind, is:

15!
10!5!

= 3003

There are 3003 ways to allocate the loonies.

Problem 1

We solved the preceding problem by modelling it as a permutations problem. 
It could also have been solved using a combinatorial approach. Provide a
combinatorial solution to the problem.

Problem 2

How many numbers between 1 and 9999 have 8 as the sum of their digits?  

Problem 3

How many ways can 10 loonies be distributed among 6 people if each person
must receive at least 1 loonie?

Problem 4

Suppose 10 coins are to be chosen from an unlimited supply of pennies, nickels,
dimes, and quarters. In how many ways can this be done? Assume that two coins
of the same kind are indistinguishable.

LL LLLL LLL

If we could distinguish
between the loonies—
for example, if all had
different dates—then
the problem would be
straightforward. Each
loonie could be
distributed in 6 ways,
so there would be 
610 ways to distribute 
10 loonies. Since we
cannot distinguish
between the loonies, it
does not matter which
person is given a
particular loonie, only
how many loonies
each person is given. 
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Focus on ... Probability

In an earlier grade, you learned the following definition of probability. If an
event A can occur in r ways out of a total of n equally likely ways, then the
probability of event A, P(A), is:

P(A) = r
n

For example, suppose four cards are dealt from a well-shuffled 
deck. What is the probability that they all are red?

There are 52 cards, of which 26 are red. The total number of 4-card 
deals is C(52, 4). The event A is being dealt 4 red cards, which can 
occur in C(26, 4) ways. 

P(red deal) = C(26, 4)
C(52, 4)

=
26 ×25 ×24 ×23

4 ×3 ×2 ×1
52 ×51 ×50 ×49

4 ×3 ×2 ×1

= 26 × 25 × 24 × 23
52 × 51 × 50 × 49

.= 0.055

There is approximately a 5.5% chance of being dealt 4 red cards.

Problem 5
Suppose 4 cards are dealt from a well-shuffled deck. What is the 
probability of getting at least one spade?

Problem 6

Suppose 4 letters are selected at random from the alphabet with repetitions
allowed. What is the probability that all the letters are different?

Problem 7 

There are 4 aces in a standard 52-card deck. A bridge hand consists of 13 cards
from the 52-card deck. Determine the probability that a bridge hand contains:

a) all four aces

b) no aces

Problem 8

A drawer contains 6 white socks and 6 black socks. Six children each take 
2 socks at random. Determine the probability that each child gets one white
sock and one black sock.

We could also have
argued as follows. The
probability that the 
first card is red is 26

52
.

Since there are 51
remaining cards, of
which 25 are red, the
probability that the 
second card is red is 25

31
.

Similarly, the probability
that the third and
fourth cards are
red is 24

50
and 23

49
,

respectively. Thus, the
probability that all 4
cards are red is 
26
52

× 25
51

× 24
50

× 23
49

.
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Focus on ... Fibonacci Numbers

The Fibonacci sequence {un} is generated by the recursive equations:

u1 = u2 = 1
un = un −1 + un −2 n = 3, 4, 5, . . .

Thus, each term is the sum of the two previous terms. The first 
20 terms of the sequence are listed at the right. 

The Fibonacci sequence is rich in arithmetic patterns. In these
problems, you will explore and prove some of these patterns.

Problem 9

Observe the following pattern. 

12 + 12 + 22 = 2 × 3
12 + 12 + 22 + 32 = 3 × 5
12 + 12 + 22 + 32 + 52 = 5 × 8

In un notation, it appears that:

12 + 12 + 22 + 32 + 52 + . . . + u2
n = unun +1

Prove this result using mathematical induction.

Problem 10

Observe that 132 − 82 = 5 × 21. Find the general form of this pattern 
and prove it directly.

Problem 11

What is the sum of the first n Fibonacci numbers? Use the Fibonacci 
numbers on this page to make a conjecture, and prove it using 
mathematical induction.

Problem 12

Observe that 82 = 5 × 13 − 1. Is this part of a pattern? If so, find the 
general form using un notation, and prove it using mathematical induction.

Problem 13

The formula 12 + 12 + 22 + 32 + 52 + 82 = 8 × 13 has a nice
geometric proof. Use the diagram at the right to find it. Does 
this proof generalize to other formulas in the same family? 

u1 1
u2 1
u3 2
u4 3
u5 5
u6 8
u7 13
u8 21
u9 34

u10 55
u11 89
u12 144
u13 233
u14 377
u15 610
u16 987
u17 1597
u18 2584
u19 4181
u20 6765

This is the most famous
sequence in mathematics,
and is an object of
continued study by
mathematicians. In fact,
there is a professional
journal devoted to the
study of the Fibonacci
numbers, The Fibonacci
Quarterly.
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Problem 14

In the array below, Pascal’s triangle is written with the 
numbers left-justified. 

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

Starting at the top, look at the diagonals that point towards
the right and sum the numbers in the diagonal. For
example, for the first 5 diagonals we have:

1
1
1 + 1 = 2
1 + 2 = 3
1 + 3 + 1 = 5

Formulate the general pattern and prove it.

Other Problems

Problem 15

An urn contains 3 white balls and 5 black balls. Three balls are selected at
random. Determine the probability that:

a) all the balls are white b) there is exactly one white ball

Problem 16

A drawer contains 6 white socks and 6 black socks. Three girls and three boys
each take 2 socks at random. Find the probability that:

a) all the girls get the white socks and all the boys get the black socks

b) each child gets socks of the same colour
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Srinivasa 
Ramanujan  
(1887–1920)
Born: Erode, 
India

Ramanujan was one of India’s
greatest mathematicians. Despite 
his lack of formal training, his
publications in mathematical
journals gained him fame in India.
Ramanujan started corresponding
with a Cambridge professor, G.H.
Hardy, who was impressed with
Ramanujan’s work and brought him
to England.
Ramanujan was admitted to the
university and graduated in 1916. 
He is most noted for his work in the
analytical theory of numbers, elliptic
functions, and infinite series.
Ramanujan was the first Indian to be
elected a Fellow of the Royal Society.
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Problem 17

Suppose 4 committees, A, B, C and D, are to be filled by 12 students. At the
beginning, each student is asked to name the committee they would most like 
to be on. Let a, b, c, and d represent the numbers of students who choose
committees A, B, C, and D, respectively. In how many ways can this be done?

Problem 18

Suppose 10 cards are chosen from a standard deck of 52 cards and the number
of spades, hearts, diamonds, and clubs selected are recorded. How many
different outcomes are possible? 

Problem 19

Suppose 10 indistinguishable dimes and 6 indistinguishable quarters are to be
distributed among 6 people: A, B, C, D, E, and F. How many ways can this be
done if it is possible for any person to receive no coins?  

Problem 20

Find how many ways a group of 12 students can be divided into 3 groups of 
4 students each if:

a) one group is to focus on permutations, another on combinations, and the 
third on mathematical induction

b) all groups have the same task

Problem 21

The student council consists of two grade 9 students, three grade 10 students,
four grade 11 students, and five grade 12 students. A committee of 4 is formed
by placing all 14 names in a hat and drawing 4 names. What is the probability
that the members of the committee are:

a) all in the same grade?

b) all from different grades?

Problem 22

Calculate the probability that a bridge hand contains:

a) the ace of spades b) exactly one ace

c) exactly two aces d) only black cards

e) at least one black card f) more black cards than red cards

g) a 3-3-3-4 distribution (that is, at least 3 cards of each suit)

Explain why the answer
to part a is reasonable.
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Problem 23

Consider 5 cards with both sides blank. On the 10 sides 
are written 5 English letters (A, B, C, D, and E) and 5
Greek letters (α , β, γ , δ, and ε ) , one letter per side. 
If the letters were assigned to a side randomly, what is 
the probability that each card has an English letter on 
one side and a Greek letter on the other?  

Problem 24

Suppose four people sit down to dinner at a table, and 
each place is set with 3 pieces of cutlery. In total, there 
are 4 knives, 4 forks, and 4 spoons on the table, but a
mischievous butler has allocated these 12 utensils at
random. Determine the probability that:

a) each person gets one of each utensil 

b) one person gets all knives, one person gets all forks,
and one person gets all spoons

Problem 25

A standard deck of 52 cards is divided at random into two equal piles of 
26 cards each. What is the probability that each pile has the same number 
of red and black cards? 

Problem 26

Multiples of 11 are easy to recognize when they are small. Observe the
following pattern in the Fibonacci numbers. 

34 = 11 × 3 + 1
55 = 11 × 5 + 0
89 = 11 × 8 + 1

Is this pattern part of a general relationship? If so, formulate the general pattern
and prove it using mathematical induction. 

Problem 27

Consider this variation of the Fibonacci sequence.

t1 = t2 = 1
tn = tn −1 + 2tn −2 n = 3, 4, 5, . . .

a) Generate the first few terms of the sequence.
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G.H. Hardy
(1877–1947)
Born: Cranleigh,
England

In his youth, Hardy did not have a
passion for mathematics even
though he excelled in the subject. At
the start of his studies at Cambridge,
he considered switching to history.
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b) Since the original Fibonacci sequence has many simple arithmetic properties,
it is likely that this sequence will too. Find an equation that corresponds to 
the Fibonacci formula: 82 = 5 × 13 − 1. 
Formulate your equation in general using tn notation. 

c) The sequence {tn} is simple enough that it is possible to guess a formula for tn
that is not a recursive formula in terms of other t-values, but a formula in terms 
of n. Find such a formula, and prove it using mathematical induction.  

Problem 28

Consider this statement:
Every number less than or equal to n can be written as a sum of distinct 
Fibonacci numbers. 
Use mathematical induction to prove this statement.

Problem 29

The identities of problem 12 give rise to a famous geometrical
paradox illustrated by the diagram at the right for the case 
82 = 5 × 13 − 1. The rectangle and the square are composed of the
same 4 pieces, yet the rectangle has an area of 65 and the square
has an area of 64. Explain. 

Challenge Problem 30
For each series, conjecture a formula for the sum of n terms,
then prove it using mathematical induction.

a) 1 • 1 + 1 • 2 + 2 • 3 + 3 • 5 + 5 • 8 + 8 • 13 + . . .

b) 1
1 × 2

+ 1
1 × 3

+ 1
2 × 5

+ 1
3 × 8

+ 1
5 × 13

+ 1
8 × 21

+ . . .

Challenge Problem 31
Consider any row of Pascal’s triangle. Multiply the entries of the row by
successive Fibonacci numbers and add the results. For example, for the fifth 
row 1, 5, 10, 10, 5, 1 the associated sum is 

1 × 1 + 5 × 1 + 10 × 2 + 10 × 3 + 5 × 5 + 1 × 8 = 89

Find the general case of this formula and prove it using mathematical induction. 
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Cumulative Performance Problems

The problems in this section offer you the opportunity to solve some significant
problems related to the topics you have studied throughout the course. Several
problems can be solved in more than one way. Some of the problems are
Curriculum Expectations
By the end of this section you will:

• Solve complex problems and present the
solutions with clarity and justification.

• Solve problems of significance, working
independently, as individuals and in
small groups.

• Solve problems requiring effort over
extended periods of time.

• Demonstrate significant learning and the
effective use of skills in tasks such as
solving challenging problems,
researching problems, applying
mathematics, creating proofs, using
technology effectively, and presenting
course topics or extensions of course
topics.

CUMULATIVE PERFORMANCE PROBLEMS 387

challenging. Considerable ingenuity may be needed to solve them. You may be
unable to complete a solution at the first attempt. You may find it helpful to work
with others, to share ideas and strategies. Be persistent—try a problem, set it aside,
try it again later, or try another strategy. It may take several days, or even longer, to
solve some of these problems.



Focus on ... Vector Proofs Using Linear Combinations

We can use linear combinations in vector proofs.

In �ABC, medians AM and BN intersect at R. 
Prove that MR = 1

3
MA.

Proof

Let −⇀u =
−⇀
BM and −⇀v =

−⇀
BA. Express 

−⇀
MA and 

−⇀
MR as

linear combinations of −⇀u and −⇀v .
−⇀
MA = −−⇀u + −⇀v ➀

−⇀
MR = −−⇀u +

−⇀
BR ➁

−⇀
BR = k

−⇀
BN

= k(0.5
−⇀
BC + 0.5

−⇀
BA)

= k(−⇀u + 0.5−⇀v )

= k−⇀u + 0.5k−⇀v
Substitute this expression for 

−⇀
BR into ➁ :−⇀

MR = −−⇀u + k−⇀u + 0.5k−⇀v
= (k − 1)−⇀u + 0.5k−⇀v ➂

Equation ➂ applies for any position of R along BN. However,
−⇀
MR and 

−⇀
MA

are collinear. Therefore, in equations ➂ and ➀ , the coefficients of −⇀u and −⇀v
are proportional.

k − 1
−1

= 0.5k
1

Solve for k to obtain k = 2
3

.

Substitute this value of k into ➂ to obtain:
−⇀
MR = −1

3
−⇀u + 1

3
−⇀v

−⇀
MR = 1

3
(−−⇀u + −⇀v )

−⇀
MR = 1

3

−⇀
MA

Therefore, MR = 1
3

MA.

v

uB CM

N

A

R

Example
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Notice the strategy that was used in the example.

• Represent two segments with vectors −⇀u and −⇀v .

• Express segments MA and MR in terms of −⇀u and −⇀v .

• Impose the condition that M, R, and A are collinear.

Give vector proofs for the next three problems.

Problem 1

Points M and N are the midpoints of opposite sides of
parallelogram ABCD. Prove that:

a) R and S trisect diagonal BD.

b) R is a point of trisection of AN and S is a point of 
trisection of MC.

Problem 2

In the diagram, D and E are the midpoints of AB and AC
respectively, and F is the midpoint of EC. Segment DF is
extended to meet BC extended at P.

a) Prove that CP is half as long as BC.

b) Prove that F is the midpoint of DP.

Problem 3

In problem 2, let G be the midpoint of AD. Prove that G, E, and P are collinear.

B C

D E

F

P

A

B C

DM

S

R

N

A

• This step uses a property of linear combinations that was developed in
exercise 22 on page 33.

• Explain why NR = 1
3

NB.

Something to Think About
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Focus on ... Sweeping a Circle with Lines

P is a point outside a circle. Visualize a line through P that 
rotates and sweeps across the circle. The turning line touches 
the circle at Q and leaves it at R. As it moves from Q to R,
the points of intersection A and B move around the two arcs 
of the circle, approaching R. In the next problem, you will 
investigate how the lengths of the segments PQ, PA, PB,
and PR are related.

Problem 4

a) Prove that �PAQ ∼ �PQB.

b) Use the result of part a to establish a relationship between the lengths of PQ,
PA, and PB.

c) Visualize what happens for other positions of PB. Describe how the lengths 
of segments PQ, PA, PB, and PR are related as the line sweeps from Q to R.

Problem 5

Find out what happens if P is inside the circle. Prove any relationships that you
think exist.

Other Problems

Problem 6

Two sides of a triangle have lengths 6 and 8 units respectively. The length of
the third side is an integer.

a) How many triangles are there satisfying these conditions?

b) How many of the triangles are isosceles? acute? obtuse?

Problem 7

A triangle has sides of length 6 cm, 8 cm, and 10 cm. If a circle is drawn
through its vertices, what is the diameter of the circle?

Problem 8

When one side of a quadrilateral is extended, an exterior angle 
is formed. Prove that the exterior angle of a cyclic quadrilateral 
is equal to its interior opposite angle. That is, for the diagram 
at the right, prove that ∠ CBE = ∠ ADC. A

D C

B E

Q

R

A

P

B



Problem 9

To construct a regular octagon, construct a square, and locate 
its centre, O. Then construct two arcs through O with centres 
at opposite vertices. Using the other vertices, draw similar arcs
through O. Join the points located on the square to form an
octagon. Prove that the octagon is a regular octagon (that is,
all its sides have the same length, and all its angles are equal).

Problem 10

A parallelogram is defined as a quadrilateral with both pairs of opposite sides
parallel. We can define a “perpendicularogram” as a quadrilateral with both
pairs of opposite sides perpendicular.

a) Sketch an example of a perpendicularogram.

b) State a property of one of the angles of a perpendicularogram.

c) The parallel sides of a parallelogram are equal in length. Are the 
perpendicular sides of a perpendicularogram equal in length? Explain.

Problem 11

In a unit cube, there are two kinds of diagonals: face diagonals (such
as AH), and body diagonals (such as AG). These diagonals form
various angles when one endpoint is joined to another vertex of the
cube. For example, visualize ∠ AHC.

a) Find as many different angle measures as you can that are formed 
by a face diagonal and another vertex.

b) Repeat part a for a body diagonal.

Problem 12

The angle sum theorem can be illustrated with a graphing calculator.

Graph three lines to Zoom out by a factor Zoom out again by a
form a triangle of 10 factor of 10

A

B C

G

HE

F

D

O
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The triangle seems to have disappeared. Zooming out does not change the
slopes of the lines, or the angles formed by the lines.

a) Explain why this demonstrates that the sum of the angles in a triangle is 180˚.

b) Is this a proof of the theorem? If your answer is no, does it suggest a proof 
of the theorem? Explain.

c) What other geometric properties can be illustrated by zooming out? Explain.

Problem 13

In �PQR, M is the midpoint of QR, and PM bisects ∠ P. Prove that 
�PQR is isosceles.

Problem 14

In the diagram at the right, D is the midpoint of AB, and T is a
point of trisection of AC. Segment DT is extended to meet BC
produced at U.

a) Prove that CU has the same length as BC.

b) Prove that TU is twice as long as DT.

Problem 15

In problem 14, let E be the midpoint of AT. Segment ED is extended to meet
UB produced at V. Prove that VB has the same length as BC.

Problem 16

a) Prove that the medians of any �ABC are concurrent. The point of
intersection of the medians is called the centroid.

b) Prove that the centroid divides each median in the ratio 2:1.

Problem 17

M and N are midpoints of two adjacent sides of rectangle ABCD. 
Segments AN and CM intersect at E.

a) Prove that ∠ AEM = ∠ MBN.

b) Determine how the angles in part a are related to the 
length:width ratio of the rectangle.

A

B C

M

N

E

D

A

B C

D
T

U
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Problem 18

In pentagon ABCDE, all five sides have the same length. 
O is the midpoint of AB, and ∠ EOC = 90˚.

a) Determine ∠ BCD.

b) Explain why there are two possible answers in part a.

Problem 19

In the diagram (below left), ABCD is a square and H is any
point on AD. Prove that DG ⊥ BE.

Problem 20

In the diagram (above right), M and N trisect side BC, and P and Q trisect side
AC of �ABC. Prove that C, X, and Y are collinear.

Problem 21

In isosceles triangle ABC, inscribed in a unit circle with centre O, AB = AC 
(first two diagrams below). The triangle is oriented so that side BC is horizontal.
The perpendicular distance from O to BC is represented by d. Visualize how
∠ BAC changes as side BC moves up and down through all possible positions
inside the circle.

a) Express ∠ BAC as a function of d.

b) Graph the function.

A

B C
N
O

d

A

B CN

O
d

A

B CN

O
d

A

B C
N
O

d

A

B

P

Q

CNM

Y

X

A

DC

B

H

G

F

E

A B

CE

O

D
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Problem 22

Repeat problem 21, but without assuming that the triangle is isosceles (last two
diagrams).

Problem 23

a) Find the point B on the line with parametric equations x = 2 + t, y = −1 − t,
z = 4 − 2t that is closest to the point A(8, −2, 3).

b) Find the length of the segment AB.

Problem 24

In the diagram, ∠ AOC = ∠ COB = 60˚. The lengths of OA, OB, and OC are a,
b, and c respectively. Show that 1

a
+ 1

b
= 1

c
.

Problem 25

Two consecutive odd numbers that are powers of natural numbers are 25 = 52

and 27 = 33. Prove that two consecutive even numbers cannot be powers of
natural numbers.

Problem 26

Prove that the sum of the squares of five consecutive integers can never be a
perfect square.

Problem 27

The double factorial symbol !! is defined as follows.

n!! = n(n − 2)(n − 4) . . . 5 × 3 × 1 if n is odd
= n(n − 2)(n − 4) . . . 6 × 4 × 2 if n is even

a) Simplify n!!(n − 1)!!

b) Prove that (2n)!! = 2n × n!

c) Find a similar expression for (2n − 1)!!

Problem 28

Find a formula for the greatest number in the nth row of Pascal’s triangle.

O

c

CA

a b

B
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Problem 29

Prove that the numbers in any row of Pascal’s triangle can always be divided
into two sets with the same sum. 

Problem 30

Some natural numbers can be expressed as a difference of two squares, but
others cannot. For example, 12 = 42 − 22, but 10 cannot be written as a
difference of two squares. Find a way to determine whether or not a given
natural number can be expressed as the difference of two perfect squares.

Problem 31

Any point P is chosen inside an equilateral triangle. Prove that the sum of the
perpendicular distances from P to the sides of the triangle is constant. How is
the constant related to the triangle?

Problem 32

In the diagram at the right, EC⊥ BD, ∠ ACD = 60˚ and 
AE = BC = 1. Determine the lengths of BE and CA.

Problem 33

P is a point inside a square. The distances from P to three of the four vertices
are 3 units, 4 units, and 5 units. Find the possible side lengths of the square.

Problem 34

A survey consists of 10 questions. Each question has 5 possible responses: SA,
A, N, D and SD. (SA stands for “strongly agree”, and so on). Suppose each
respondent is to be classified according to the number of responses of each
type. If all respondents answer all 10 questions, how many categories are
possible?

Problem 35

The number 100! shown on the screen at the top of the following page was
determined using TI-Interactive!.

a) Explain why there are 24 zeros at the end of 100!.

DCB

E

1

1
60˚

A
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b) Suppose we use TI-Interactive! to calculate 200!. How many zeros would 
there be at the end of this number? Explain.

Problem 36

Prove that there is no infinite arithmetic sequence of natural numbers 
whose terms are all prime numbers, except for the trivial case when 
the common difference is 0.

Problem 37

A deck of 52 cards is shuffled, and a hand containing x cards is dealt.
The graphing calculator screen shows the number of possible hands, y,
as a function of x.

a) For what value of x does the maximum value of y occur? Explain.

b) Determine the coordinates of the maximum point. What does the 
y-coordinate of this point represent?

c) Explain why the graph is symmetric about the line x = 26.

d) Write the equation of the function, and state its domain.

Problem 38

Visualize rolling a die several times. These graphing calculator screens show
the probabilities of rolling no 6s and of rolling at least one 6 as the number 
of rolls increases.

1

0

1

0

0 23

Probability of at least one 6

0 23

Probability of no 6

Number of rollsNumber of rolls
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a) Carry out calculations to check the results shown at the bottom of each screen. 
That is, for 5 rolls, P(no 6s) 

.= 0.402 and P(at least one 6) 
.= 0.598.

b) The graphs shown on the screens are functions. Write the equation of each 
function, where n is the number of rolls.

c) Determine the least number of rolls so the probability of at least one 6 is 
greater than 0.99.

Problem 39

A hand of 13 cards is dealt from a shuffled deck of 52 cards. The
graphing calculator screen shows the probability that the hand contains
different numbers of spades.

a) Calculate to confirm the result shown; that is, P(5 spades) 
.= 0.125.

b) The graph shown on the screen is the graph of a function. Write the 
equation of the function, where n is the number of spades dealt.

c) Determine the probability that the hand contains each number of spades.
i) 3 spades ii) 8 spades iii) 13 spades

Problem 40

a) Suppose 10 distinguishable books are to be put into 4 distinguishable boxes,
numbered 1 to 4. In how many ways can this be done if any box can 
remain empty?

b) Suppose 10 distinguishable books are to be arranged on 4 shelves, numbered 
1 to 4. In how many ways can this be done if any shelf can be empty? This is
different from part a in that you will have to account for the order in which 
the books are displayed on each shelf.

c) Consider 10 books: 2 copies of Macbeth (M), 2 copies of Hamlet (H), 3 copies
of King Lear (L), and 3 other books that are different from each other. Assume
copies of the same book are indistinguishable. The books are to be arranged 
on 4 shelves, numbered 1 to 4. In how many ways can this be done if any 
shelf can be empty?

Problem 41

Use mathematical induction to prove that (1 + x)n ≥ 1 + nx for all natural
numbers n, where x is a real number that is greater than or equal to −1.

Problem 42

Prove that a regular polygon with n sides has 1
2

n(n − 3) diagonals.
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Problem 43

The outer rectangle in the diagram has height 1 unit and length
x units. Visualize how the inner shaded rectangle changes as x
varies. Express the area of the inner shaded rectangle as a
function of x. Graph the function.

Problem 44

In certain rural areas of Russia, an unmarried girl who wants to know her
fortune would get a friend to hold six long blades of grass in her fist with the
ends protruding above and below. The girl would tie the six top ends in pairs
and then tie the six bottom ends in pairs. If she had succeeded in tying all six
blades into a single ring, she would be married within a year. What is the
probability of forming the ring?

Problem 45

The natural numbers are written in a triangle as shown at the right. 

Prove that the sum of the numbers in the nth row is n(n2 + 1)
2

.

Problem 46

A sequence is defined recursively as follows: t1 = 1, tn +1 =
√

2tn + 1

a) Prove that every term of the sequence is less than 3.

b) Prove that every term of the sequence is greater than the preceding term.

Problem 47

In �ABC, AB = AC, and ∠ A = 20˚. M is a point on AB such that ∠ MCB = 50˚,
and N is a point on AC such that ∠ NBC = 60˚. Calculate ∠ BNM.

Problem 48

In the diagram below, A, B, and C are the midpoints of segments 
FC, HA, and DB respectively. Prove that �ABC and �FHD have 
the same centroid.

H

D
F

A C

B

1

3

6

10

15

2

5

9

14

4

8

13

7

1211
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Problem 49

In the diagram at the right, segments AB, BC and CD 
are equal in length. Segments AE, EF and FG are also
equal in length. Prove that A, P and Q are collinear.

Challenge Problem 50

A triangle is inscribed in a circle, and P is any point on the circle. Prove that 
the distance from P to the farthest vertex of the triangle is equal to the sum of
its distances to the other two vertices if and only if the triangle is equilateral.

Challenge Problem 51

Prove that a triangle with sides of length a, b, and c is equilateral if and only if
(a + b + c)2 = 3(ab + bc + ac) .

Challenge Problem 52

In �ABC at the right, the incircle with centre I is tangent to
BC at P. If M is the midpoint of BC and N is the midpoint of
AP, prove that M, I, and N are collinear.

Challenge Problem 53

We say that a product is calculated “by pairs” when the product of two factors
is used as a factor in the next calculation. For example, here is one way to
calculate 2 × 3 × 4 × 5 × 6 × 7 by pairs.

2 × 3 × 4 × 5 × 6 × 7 = 2 × 3 × 4 × 30 × 7
= 6 × 4 × 30 × 7
= 6 × 120 × 7
= 6 × 840
= 5040

a) In how many different ways can the above product be calculated by pairs? 
Assume that the order of the factors is not changed; that is, only numbers 
that are beside each other are multiplied in each step.

b) Obtain a recursion formula for calculating the number of ways a product 
of n factors can be evaluated by pairs.

A

CPM

I
N

B

D

A
P

Q

CB

E

F

G
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Challenge Problem 54

You have 12 balls: 6 black and 6 white. 

a) Suppose these balls are randomly distributed among 6 people, with each 
person getting 2 balls. What is the probability that each person gets 1 ball 
of each colour?

b) Suppose the balls are randomly distributed among 2 people so that each 
person gets 6 balls. What is the probability that each receives 3 of each
colour?

c) The problems in parts a and b appear to be similar. In fact, they belong to a 
family of problems with a common solution pattern. Formulate another 
problem in the family and solve it. 

d) Find a general pattern in your solutions to parts a, b, and c. Show that the 
solutions and answers to the three problems in parts a, b, and c are really 
particular versions of a general solution.

Challenge Problem 55

In the diagram at the right, points A, B and C lie on the circle 

with centre O. 
−⇀
CB′ =

−⇀
OB and 

−⇀
B′H =

−⇀
OA.

a) Build a dynamic model of this situation using The Geometer’s
Sketchpad. 

b) As each of the points A, B and C move about the circle,
describe the locus of point H. 

c) Prove that H is the orthocentre of triangle ABC.

A

C

B

B′

O

H
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Student Reference

absolute value: the non-negative distance
between any real number and zero on the
number line

|−5| = 5, and also |5| = 5

actual velocity: the resultant velocity of two or
more velocities

acute angle: an angle whose measure is less
than 90˚

Addition Principle: if two actions are mutually
exclusive, and one can be done in m ways and
the other in n ways, then there are m + n ways
in which the first or second action can be
performed; see Section 6.4

alternate angles: a pair of angles that are
between two lines on opposite sides of a
transversal that cuts the two lines; see parallel
lines

angle between two vectors: the angle θ
between two vectors −⇀a and 

−⇀
b is the acute

angle between the two vectors when they are
arranged tail-to-tail; to find θ, use the formula 

cos θ =
−⇀a •

−⇀
b∣∣−⇀a ∣∣∣∣−⇀b ∣∣

angle bisector: the line that divides an angle
into two equal angles

Angle Sum Theorem: in any triangle, the sum
of the angles is 180˚

Angles in a Circle Theorem: the inscribed
angles on the same side of a chord of a circle
are equal A B

⇀a

⇀
b

θ

1

3
2

4

Angles 1 and 2 are alternate angles.
Angles 3 and 4 are alternate angles.

Alternate-Angles Theorem: suppose a
transversal intersects two lines l1 and l2; the
lines are parallel if and only if the alternate
angles are equal

altitude: a perpendicular line segment drawn
from a vertex or side of a figure to the opposite
side (or an extension of the opposite side); also
called height

arc: a segment of the circumference of a circle

arithmetic sequence: a sequence in which the
same number, the common difference, is added
to each term to get the next term; the general
arithmetic sequence is a, a + d, a + 2d + … +
a + (n − 1)d, where a is the first term, d is the
common difference, and n is the number of
terms; the nth term is tn = a + (n − 1)d

In the arithmetic sequence 4, 1, –2, –5, –8 …, 
a = 4, d = −3, and tn = 4 + (n − 1)(−3), or 7 − 3n.

A

B

minor arc

major arc

Altitude

l1

l2

x

x

o

o
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arithmetic series: the indicated sum of the
terms of an arithmetic sequence; the general
arithmetic series is a + (a + d) + (a + 2d) +
… + [a + (n − 1)d], where a is the first term, d
is the common difference, and n is the number
of terms; the sum of the first n terms of an
arithmetic series is Sn = n

2
[2a + (n − 1)d]

Associative Law of Addition: the result of
adding three items does not depend on the
grouping

• for all real numbers a, b, and c:
(a + b) + c = a + (b + c)

• for all vectors −⇀a ,
−⇀
b , and −⇀c :

(−⇀a +
−⇀
b ) + −⇀c = −⇀a + (

−⇀
b + −⇀c )

axiom: a statement generally accepted without
proof; also called a postulate or assumption

axis of symmetry: see line symmetry

base: the side of a polygon or the face of a solid
from which the height is measured; also, the
factor repeated in a power

bearing: in navigation, the clockwise angle
between due north and the line of travel of 
an object

Binomial Theorem: for any natural number n,

(a + b)n =
n∑

r =0

C(n, r)an − rbr ; see Section 7.2

bisector: a line that divides a line segment into
two equal parts

The broken line is a bisector of AB.

Cartesian coordinates: in R2, an ordered pair
that locates a point by its distance from two
intersecting lines (the axes), the distance from
one line being measured parallel to the other
line

The coordinates of point A are (2, –3).

Cartesian vector: a vector that is described in
terms of its components and is plotted on a grid

• in R2, a vector −⇀v = [x, y] or 

−⇀v = x
−⇀
i + y

−⇀
j , where 

−⇀
i = [1, 0] is the 

unit vector along the x-axis and 
−⇀
j = [0, 1]

is the unit vector along the y-axis; see 
Section 1.5

• in R3, a vector −⇀v = [x, y, z] or 
−⇀v = x

−⇀
i + y

−⇀
j + z

−⇀
k , where 

−⇀
i = [1, 0, 0]

is the unit vector along the x-axis,−⇀
j = [0, 1, 0] is the unit vector along the 

y-axis, and 
−⇀
k = [0, 0, 1] is the unit vector

along the z-axis; see Section 2.1

Cartesian vector operations: 

• in R2, for any vectors −⇀a = [x1, y1] and −⇀
b = [x2, y2] and any real number k,
−⇀a +

−⇀
b = [x1 + x2, y1 + y2],

−⇀a −
−⇀
b = [x1 − x2, y1 − y2],

and k−⇀a = [kx1, ky2] ; see Section 1.5

• in R3, for any vectors −⇀a = [x1, y1, z1] and −⇀
b = [x2, y2, z2] and any real number k,
−⇀a +

−⇀
b = [x1 + x2, y1 + y2, z1 + z2] ,

−⇀a −
−⇀
b = [x1 − x2, y1 − y2, z1 − z2] ,

and k−⇀a = [kx1, ky1, kz1]; see Section 2.1

−2

2

y

−2−4 2 4

A(2, −3)

x

A B

145˚

C

A

N

20˚

N B

A

The bearing
of C from A 
is 145˚.

The bearing
of B from A 
is 020˚.

300˚

A

D

N
The bearing
of D from A 
is 300˚.

402 STUDENT REFERENCE



cell reference: the name of a cell in a
spreadsheet, given by indicating the column
and row to which it belongs

Cell B3 is the cell in column B and row 3 of the
spreadsheet document.

centroid: the point where the three medians of 
a triangle intersect

chord: a line segment whose endpoints lie on 
a circle

circumcentre: the point of intersection of 
the perpendicular bisectors of the sides of 
a triangle

circumcircle: a circle drawn through each of 
the vertices of a triangle with its centre at the
circumcentre of the triangle

coefficient:  the numerical factor of a term
The coefficient in the term 10xy2 is 10.

coincident: to occupy the same position

collinear points: points that lie on the 
same line

collinear vectors:  vectors that are scalar
multiples of each other

combination:  a selection from a group of
objects without regard to order; a combination
of n different objects taken r at a time is
denoted C(n, r), where C(n, r) = n!

r!(n − r)!
; 

see Section 6.5

combined statement: a single statement that
combines a statement and its converse, when
they are both true, using the words “…if and
only if…”

common difference: the number obtained by
subtracting any term from the next term in an
arithmetic sequence

For the arithmetic sequence 3, 7, 11, 15, ..., the
common difference is 7 − 3 = 4.

Commutative Law of Addition: the order of
addition of two quantities does not affect the
sum

• for all real numbers a and b: a + b = b + a

• for all vectors −⇀a and
−⇀
b :

−⇀a +
−⇀
b =

−⇀
b + −⇀a

complementary angles: two angles whose
measures add to 90˚

∠ABC and ∠CBD are complementary angles.

components: the values of the ordered pair
[x, y] or ordered triple [x, y, z] used to describe
Cartesian vectors

concentric circles: circles with the same centre

concurrent: having a point in common

concyclic points: points that lie on the
circumference of the same circle

congruence axioms for triangles: 

• SSS Congruence Axiom: if three sides of one
triangle are equal to three sides of another
triangle, then the triangles are congruent

• SAS Congruence Axiom: if two sides and the
contained angle of one triangle are equal to 
two sides and the contained angle of another
triangle, then the triangles are congruent

• ASA Congruence Axiom: if two angles and
the contained side of one triangle are equal to
two angles and the contained side of another
triangle, then the triangles are congruent

congruent: figures that have the same size and
shape, but not necessarily the same orientation

A C

DB

4 collinear points 4 non-collinear points

O

A

B

AB is a chord.

STUDENT REFERENCE 403



conjecture: a conclusion based on examples

consecutive integers: integers that come one
after the other without any integers missing

23, 24, 25 are consecutive integers; so are –5,
–4, –3, –2, –1, and 0.

consistent system of equations: a system of
equations with at least one solution

converse:  the statement formed by
interchanging the hypothesis and conclusion of
an “if … then” statement

The converse of “If a triangle has three equal
sides then it has three equal angles” is “If a
triangle has three equal angles then it has
three equal sides.”

coordinate axes:  in two dimensions, two 
perpendicular or oblique lines on a grid that
represent the plane; in three dimensions, three
intersecting lines that are usually mutually
perpendicular

2-D coordinate 3-D coordinate
axes axes

coordinate plane: a two-dimensional surface
on which a coordinate system has been set up

• in R3, the coordinate planes are the 
xy-plane, the xz-plane, and the yz-plane;
points on each plane have ordered pairs as
follows: (x, y, 0) on the xy-plane, (x, 0, z) on
the xz-plane, and (0, y, z) on the yz-plane

coplanar vectors: vectors that lie on the same
plane; see Sections 2.2 and 2.5

corollary:  a theorem that follows directly from
another theorem

corresponding angles: angles on the same side
of a transversal that cuts through two lines and
that are on the same side of each line

Corresponding-Angles Theorem: a
transversal intersects two lines l1 and l2; 
the lines are parallel if and only if the
corresponding angles are equal

Cosine Law: a trigonometric law used to solve
triangles that are not right triangles; to use the
Cosine Law, we need to know:

• the measure of two sides and their included
angle, or 

• the measure of three sides

In any triangle ABC, the following relationships
exist:
a2 = b2 + c2 − 2bc cos A
b2 = a2 + c2 − 2ac cos B
c2 = a2 + b2 − 2ab cos C

In �ABC, ∠B = 48˚, AB = 7.3 cm, and 
BC = 5.2 cm; calculate the length of AC.

Use the Cosine Law.
b2 = a2 + c2 − 2ac cos B
Substitute the known measures.
b2 = 5.22 + 7.32 − 2(5.2)(7.3) cos 48˚

= 29.529 604

b
.= 5.4

AC is approximately 5.4 cm.

In �PQR, PQ = 7.8 cm, QR = 6.2 cm, and 
PR = 9.7 cm; calculate the measure of ∠Q to 
1 decimal place.

Q

R

P

6.2 cm

7.8 cm

9.7 cm

B

C

A

5.2 cm
7.3 cm

48˚

A C

B

c a

b

l1

l2

x

x

z

x y
z w

w
x y

y

z

x

−2

0

2
y

−2 2
x
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Use the Cosine Law.
q2 = p2 + r2 − 2pr cos Q

Substitute the known measures, then solve 
for Q.

9.72 = 6.22 + 7.82 − 2(6.2)(7.8) cos Q

cos Q = 0.053 950

∠Q
.= 86.907˚

∠Q is approximately 86.9˚.

counterexample:  an example that shows a
conjecture to be false

cross product of Cartesian vectors: if 
−⇀a = [a1, a2, a3] and 

−⇀
b = [b1, b2, b3] , then 

−⇀a ×
−⇀
b = [a2b3 − b2a3, a3b1 − b3a1, a1b2 − b1a2]

cross product of geometric vectors: in R3,

the vector −⇀a ×
−⇀
b that is perpendicular to the 

plane of two non-collinear vectors −⇀a and 
−⇀
b

arranged tail-to-tail and forming an angle θ,

such that 0˚ ≤ θ ≤ 180˚; the vectors −⇀a ,
−⇀
b ,

and −⇀a ×
−⇀
b satisfy the right-hand rule, and ∣∣−⇀a ×

−⇀
b

∣∣ =
∣∣−⇀a ∣∣∣∣−⇀b ∣∣ sin θ

cross product properties: 

• −⇀a ×
−⇀
b = −

(−⇀
b × −⇀a )

• −⇀a ×
(−⇀

b + −⇀c )
= −⇀a ×

−⇀
b + −⇀a × −⇀c

• −⇀a × −⇀a = 0

cyclic quadrilateral: a quadrilateral whose
vertices lie on a circle

deductive proof:  the derivation of a result by
logical process from axioms accepted as true

diagonal: a line segment that joins two vertices
of a polygon but is not a side

direct proof: the method of beginning with a
statement that is accepted as true and using
deduction to arrive at the desired conclusion

direction angles: the angles that a vector
makes with the positive coordinate axes; see
Section 2.1

direction cosines: the cosines of the direction
angles of a vector; see Section 2.1

direction vector: one or more non-zero vectors
used to specify the direction of a line or plane;
the direction vector of a line is any vector −⇀m
parallel to the line; the direction vectors of a
plane are any two non-collinear vectors −⇀u
and −⇀v contained in the plane

directrix of a parabola: the fixed line such
that the distance from any point P on the
parabola to the fixed line is equal to the
distance from P to the focus F; see focus of a
parabola

distance formula: a formula used to determine
the distance between two points whose
coordinates are known; the distance between
the points P1(x1, y1) and P2(x2, y2) is

P1P2 =
√

(x2 − x1)2 + (y2 − y1)2

Determine the distance between the points 
A(3, 4) and B(–5, 1).

AB =
√

(3 + 5)2 + (4 − 1)2

=
√

64 + 9

=
√

73

distance from a point to a line: the distance
from a point P(x1, y1) to the line 

Ax + By + C = 0 is d =
∣∣Ax1 + By1 + C

∣∣
√

A2 + B2

distance from a point to a plane: the
distance from a point P(x1, y1, z1) to the 
plane Ax + By + Cz + D = 0 is 

d =
∣∣Ax1 + By1 + Cz1 + D

∣∣
√

A2 + B2 + C 2

Distributive Property: a product can be
written as a sum or difference of two products

• for all real numbers a, b, and c:
a(b ± c) = ab ± ac

dot product of geometric vectors: 
−⇀a •

−⇀
b =

∣∣−⇀a ∣∣∣∣−⇀b ∣∣ cos θ , where −⇀a and
−⇀
b

are arranged tail-to-tail forming an angle θ,

A

B

C

DE

AC is a diagonal and BD is also a diagonal.

A

D

C

B
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such that 0˚ ≤ θ ≤ 180˚; also known as the
scalar product or inner product

dot product of Cartesian vectors: 

• in R2, if −⇀a = [a1, a2] and −⇀
b = [b1, b2] , then −⇀a •

−⇀
b = a1b1 + a2b2

• in R3, if −⇀a = [a1, a2, a3] and −⇀
b = [b1, b2, b3] , then 
−⇀a •

−⇀
b = a1b1 + a2b2 + a3b3

dot product properties: for any three vectors 
−⇀a ,

−⇀
b , and −⇀c :

• −⇀a •
−⇀
b =

−⇀
b • −⇀a

• −⇀a • (
−⇀
b + −⇀c ) = −⇀a •

−⇀
b + −⇀a • −⇀c

• −⇀a • −⇀a =
∣∣−⇀a ∣∣2

• k(−⇀a •
−⇀
b ) = (k−⇀a ) •

−⇀
b = −⇀a • (k

−⇀
b ),

for any scalar k

elementary row operations: are used to 
solve a system of equations using matrices; 
an equivalent system is obtained by performing
any of the following operations:

• multiply the numbers in any row by any
constant

• replace any row by adding the numbers in
any other row to the numbers in that row

• replace any row with a linear combination of
that row and another row

ellipse:  the closed curve that results when a
plane intersects a cone; or the locus of a point
P that moves so the sum of its distances from
two fixed points (the foci) is constant

equal vectors: vectors that have the same
magnitude and direction

equation of a line: an equation that gives the
relationship between the coordinates of every
point on the line

• the slope-point form: y − y1 = m(x − x1),
where m is the slope of the line and (x1, y1) is
a point on the line

• the slope-intercept form: y = mx + b, where
m is the slope of the line and b is the 
y-intercept of the line

• the general form: Ax + By + C = 0, where A,

B, and C are constants such that −A
B

is the 

slope of the line, and −C
B

is the y-intercept of
the line

equidistant: the same distance apart
Points A and B are equidistant from the y-axis
since they are both 3 units from the y-axis.

equilibrant: a force equal in magnitude but
opposite in direction to the resultant force

equilibrium: when an object is acted upon by
forces but does not move, the object is said to
be in equilibrium

equivalent systems: systems of equations with
the same solution(s)

exterior angle: an angle formed outside a
polygon by extending a side of the polygon

45-45-90 triangle: a triangle with angles 45˚,
45˚, and 90˚; the ratio of the sides
corresponding to these angles is 1:1:

√
2

factorial: the product of the first n natural
numbers is called n factorial, denoted 

n! = n(n − 1)(n − 2)(n − 3) × . . . × 3 × 2 × 1;
also, 0! = 1; see Section 6.2

foci of a hyperbola: the two points F1 and F2

on the transverse axis of a hyperbola such that∣∣PF1 − PF2
∣∣ is constant for all points P on the

hyperbola

F1

P

F2

1
45˚

45˚

1

√
2

θ

−2

2
y

0−2

A(−3, 2) B(3, 2)

−4 2 4
x
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foci of an ellipse: the two points F1 and F2

on the major axis of an ellipse such that 

PF1 + PF2 is constant for all points P on 
the ellipse

focus of a parabola: the point F on the axis of
symmetry of a parabola such that the distance
of any point P on the parabola from F is equal
to the distance of P from the directrix

When the focus is on the x-axis, the equation
of the parabola is y2 = 4px. The coordinates of
the focus are F(p, 0) and the equation of the
directrix is x = −p.

When the focus is on the y-axis, the equation
of the parabola is x2 = 4py. The coordinates of
the focus are F(0, p) and the equation of the
directrix is y = −p.

force: a push or a pull on an object in a certain
direction; a quantity that can be represented by
a vector

Fundamental Counting Principle: if an
action can be done in m ways, and for each
way a second action can be done in n ways,
then the two actions can be performed, in that
order, in mn ways; see Section 6.1

geometric sequence: a sequence in which
each term is multiplied by the same number,
the common ratio, to get the next term; the
general geometric sequence is a, ar, ar2,
ar n −1, where a is the first term, r is the
common ratio, and n is the number of terms;
the general term is tn = ar n −1

In the geometric sequence 16, 4, 1, 1
4

, 
1
16

… , each term after the first is calculated 

by multiplying the previous term by 1
4

.

geometric series: the indicated sum of the
terms of a geometric sequence; the general
geometric series with n terms is a + ar +
ar2 + . . . + ar n −1, where a is the first term, r
is the common ratio, and n is the number of
terms; the sum of the first n terms 

of a geometric series is Sn = a(r n − 1)
r − 1

geometric vector: an arrow or a directed line
segment; the arrowhead points in the direction 

of the vector 
The vector −⇀v below may also be written as 
−⇀
AB, where the point A is the initial point or tail,
and the point B is the terminal point or head.

head: the head of vector 
−⇀
AB is the point B, also 

called the terminal point of the vector 
−⇀
AB

heading: the direction in which an object is
being steered

• a wind or current can add another velocity
component to the object, so the actual
bearing relative to the ground is usually not
the same as the heading

head-to-tail: a method of joining vectors so that
the head of one vector connects with the tail of
the other

A

B head (terminal 
point)       

v
A

B 

tail (initial point)

head (terminal 
point)

F(0, p)
x2 = 4py

O

y = −p

x

y

F(p, 0)

y2 = 4px

O

x = −p

x

y

F

D

P

directrix

P

F1F2
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hexagon:  a six-sided polygon

identity: an equation that is true for all values of
the variable for which both sides of the
equation are defined; identities occur in algebra
as well as in trigonometry

The equation 3(x − y) = 3x − 3y is an algebraic
identity. It is true for all values of x and y.

incentre: the point of intersection of the three
angle bisectors of a triangle

incircle: a circle drawn inside a triangle, with its
centre at the incentre and with the radius the
shortest distance from the incentre to one of the
sides of the triangle

inconsistent system of equations: a system
of equations with no solution

index of summation: the variable under the 
∑

sign and in the expression after it

The variable k is the index of summation for 

the sum 
100∑
k = 1

(2k − 1).

indirect proof: a method of proof that involves
assuming that the statement to be proved is
false and working towards a contradiction

inductive reasoning: a method of making a
conjecture on the basis of observing and
generalizing a series of examples

inequality: a statement that one quantity is
greater than or less than another quantity

inscribed angle: the angle between two chords
of a circle that have a common endpoint

∠ABC is an inscribed angle.

irrational number: a number that cannot be
written in the form a

b
, where a and b are

integers (b ≠ 0)
Numbers such as 

√
2, 

√
3, π, and non-

terminating, non-repeating decimals are
irrational.

isosceles right triangle:  a triangle containing
two equal sides and a 90˚ angle

∠A = ∠C = 45˚

Isosceles Triangle Theorem: in an isosceles
triangle, the angles opposite the equal sides are
equal

joule: a unit of measure for the work done by an
object; also called a newton metre

legs: the sides of a right triangle that form the
right angle

line symmetry: a figure that maps onto itself
when it is reflected in a line is said to have line
symmetry

Line l is the axis of symmetry for figure ABCD.

linear combinations of vectors: a linear 

combination of two vectors −⇀a and 
−⇀
b has the 

form s−⇀a + t
−⇀
b , where s and t are any scalars;

see Section 1.4

locus: the path traced by a point that moves
according to a given condition

Determine the locus of a point P that moves so
it is equidistant from A(4, 0) and B(1, 2).

Let P(x, y) be any point on the locus such that
PA = PB. Use the distance formula to determine
the lengths of PA and PB.√

(x − 4)2 + (y − 0)2 =
√

(x − 1)2 + (y − 2)2

Square each side.
(x − 4)2 + y2 = (x − 1)2 + (y − 2)2

x2 − 8x + 16 + y2 = x2 − 2x + 1 + y2 − 4y + 4

A

B

C

l

D

B

A

C

A

B

C

O
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Collect like terms.
−6x + 4y + 11 = 0
The equation of the locus is 6x − 4y − 11 = 0.
The locus is a straight line.

magnitude: the length of a vector, often written
using absolute value bars

• in R2, −⇀a = [a1, a2] has magnitude ∣∣−⇀a ∣∣ =
√

a1
2 + a2

2

• in R3, −⇀a = [a1, a2, a3] has magnitude ∣∣−⇀a ∣∣ =
√

a1
2 + a2

2 + a3
2

major axis of an ellipse: the longer axis of
symmetry of an ellipse

matrix: a rectangular array of numbers

median of a triangle: a line from one vertex to
the midpoint of the opposite side

AM is a median of �ABC.

midpoint: the point that divides a line segment
into two equal parts; if the coordinates of the
endpoints of the line segment are A(x1, y1) and
B(x2, y2), the coordinates of M(x, y) are 

x = x1 + x2

2
and y = y1 + y2

2

The ratio of AM : MB is 1 : 2.
It is also true that AM = 1

2
AB.

natural numbers: the set of counting numbers
1, 2, 3, 4, …

normal vector of a plane: a vector that is
perpendicular to a plane

obtuse angle: an angle greater that 90˚ but less
that 180˚

octant: one of the eight regions into which the
three coordinate planes divide 3-space

opposite vectors: vectors that have the same
magnitude but act in opposite directions

orthocentre: the point at which the altitudes of
a triangle intersect

parallel lines: lines in the same plane that do
not intersect; see Alternate-Angles Theorem
and Corresponding Angles Theorem

parallelogram: a quadrilateral with opposite
sides parallel

A parallelogram has the following properties:
The opposite sides have equal lengths.
AB = CD and AD = BC
The opposite angles have equal measures
(congruent).
∠A = ∠C and ∠B = ∠D
The diagonals bisect each other (cut each other
into equal lengths).
AE = EC and DE = EB

Parallelogram Law of Vector Addition: a
method for adding vectors that are arranged 

tail-to-tail; to add −⇀a and 
−⇀
b , complete the 

parallelogram determined by −⇀a and 
−⇀
b ; the 

sum, −⇀a +
−⇀
b , is the vector with the same tail

as −⇀a and 
−⇀
b and with its head at the opposite

vertex of the parallelogram

parameter: a constant in an expression that may
have many values but does not change the form
of the expression

In y = mx + b, m and b are parameters which
specify the particular line represented by the
equation.

a

b a + b

D C

A B

E

P

BA M

B

A

CM
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parametric equations of a line: a set of
equations that describe each coordinate of any
point on a line in R2 or R3 in terms of the
coordinates of a fixed point on the line and the
components of a direction vector parallel to the
line; see vector equation of a line

• in R2, the parametric equations of the line
through A(a1, a2) with direction vector−⇀m = [m1, m2] are x = a1 + tm1 and
y = a2 + tm2, where t is any real number

• in R3, the parametric equations of the line
through A(a1, a2, a3) with direction vector−⇀m = [m1, m2, m3] are x = a1 + tm1,
y = a2 + tm2, and z = a3 + tm3, where t is any
real number

parametric equations of a plane: a set of
equations that describe each coordinate of any
point on a plane in terms of the coordinates of
a fixed point on the plane and the components
of two non-collinear direction vectors
contained in the plane

• the parametric equations of the plane through
A(a1, a2, a3) with direction vectors−⇀u = [u1, u2, u3] and −⇀v = [v1, v2, v3] are
x = a1 + su1 + tv1, y = a2 + su2 + tv2, and
z = a3 + su3 + tv3 , where s and t represent
any real numbers

Pascal’s Triangle: the following triangular
number pattern; see Section 7.1

permutations: an ordered arrangement of
objects

• the number of permutations of n different
objects taken all at a time is denoted by
P(n, n) where P(n, n) = n!

• the number of permutations of n different
objects taken r at a time is denoted by 

P(n, r) = n!
(n − r)

, 0 ≥ r ≥ n

• the number of permutations of n objects, of
which a objects are alike, another b objects
are alike, another c objects are alike, and so 

on, is n!
a!b!c!. . .

perpendicular bisector: a line that bisects at
right angles

BC = CD and ∠ACB = 90˚

plane: a flat, two-dimensional surface that
extends indefinitely in all directions

plane figures: a geometric figure that can be
drawn or visualized on a two-dimensional
plane; for example, circles, ellipses, and
polygons

point symmetry: a figure that maps onto itself
after a rotation of 180˚ about a point is said to
have point symmetry

polygon: a closed figure that consists of three or
more line segments that only intersect at their
endpoints

The above figures are polygons.

These figures are not polygons.

The table below gives the names of some
common polygons.

PolySmlt: a program for solving matrices using
the Ø menu of the TI-83 Plus calculator

position vector:  a vector whose tail is at the
origin and whose components are the
coordinates of its head

Polygon
Number of

sides

3

4

5

6

8

10

n

Triangle

Quadrilateral

Pentagon

Hexagon

Octagon

Decagon

n-gon

B

A

C D

1

1

1

1

1

1

1

1

2

3

4

5

6

1

3

6

10

15

1

4

10

20

1

5

15

1

61

1 1

…
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prime number: a whole number with exactly
two factors, itself and 1

3, 5, 7, 11, 13, 17, 19, 23, and 29 are prime
numbers.

Principle of Mathematical Induction: a
result involving natural numbers is true for all
natural numbers if both of the following are
true:

• the result is true when n = 1

• if the result is true when n = k , then it is true
for n = k + 1

prism: a solid with two congruent and parallel
faces (bases); all other faces are parallelograms

projection of a vector: the projection of −⇀a on −⇀
b , written −⇀a ↓ −⇀

b , is a new vector −⇀c such 

that −⇀c =
(−⇀a •

−⇀
b

−⇀
b •

−⇀
b

) −⇀
b , where 

−⇀
b ≠

−⇀
0

proportion: a statement that two ratios are equal

pyramid: a solid with one face that is a polygon
(base) and other faces that are triangles with a
common vertex

Pythagorean identity: for any angle θ,
sin2 θ + cos2 θ = 1

Pythagorean Theorem: for any right triangle,
the area of the square on the hypotenuse is
equal to the sum of the areas of the squares on
the other two sides

If �ABC is a right triangle, then c2 = a2 + b2 .

The converse is also true. If c2 = a2 + b2 in
�ABC, then ∠C = 90˚.

quadrant: one of four regions into which the
coordinate axes divide the plane, usually
numbered as shown in the diagram

quadrilateral:  a four-sided polygon 

radical: the root of a number√
a ×

√
b =

√
a × b, a ≥ 0, b ≥ 0

√
a√
b

=
√

a
b

, a ≥ 0, b > 0

rational numbers: a number that can be written
in the form a

b
, where a and b are integers 

(b ≠ 0); all integers, terminating decimals, and
repeating decimals are rational numbers

recursion formula: a rule by which each term
of a sequence is generated from the preceding
term or terms

State the recursion formula for the sequence 
1, 3, 4, 7, 11, ….

In the given sequence, the third term is the
sum of the first and second terms, the fourth
term is the sum of the second and third terms,
and each term after that is the sum of the
previous two terms.

Thus, the terms of the sequence are t1 = 1,
t2 = 3, t3 = 1 + 3 , t4 = 3 + 4 , t5 = 7 + 11, and 
so on.
The recursion formula for the sequence is
tn + 1 = tn + tn − 1 , where n ≥ 2.

reduced matrix: the matrix that results from the
use of elementary row operations and has the 

form


 1 0 0 ∗

0 1 0 ∗
0 0 1 ∗




y

II I

IVIII

x
O

B

A

b

a

c

C

θ

b

a

a ↓ b

⇀

⇀ ⇀
⇀
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regular polygon:  a polygon with all sides and
all angles equal

The polygons above are regular polygons.

relative velocity: see actual velocity

resolving a vector: the procedure for
determining the components of a vector

• if −⇀r be a non-zero vector that makes an
angle θ with the positive x-axis then,
−⇀r = [a, b] , where a =

∣∣−⇀r ∣∣ cos θ and 

b =
∣∣−⇀r ∣∣ sin θ

resultant vector: a single vector which
represents the combined effect of two or more
individual vectors

rhombus: a parallelogram with four equal sides

right-hand rule: the direction of −⇀a ×
−⇀
b is

perpendicular to the plane containing −⇀a and −⇀
b so that −⇀a ,

−⇀
b , and −⇀a ×

−⇀
b satisfy the

right-hand rule: when the fingers of the right 

hand point in the direction of −⇀a and curl 

towards 
−⇀
b , the thumb points in the direction 

of −⇀a ×
−⇀
b

row reduction:  the method of using elementary
row operations to obtain a reduced matrix when
solving a system of equations

scalar: a quantity that can be described by a
single number

scalar equation of a line: has the form
Ax + By + C = 0, where A and B are the
components of its normal vector −⇀n = [A, B];
also called a Cartesian equation

scalar equation of a plane: has the form
Ax + By + Cz + D = 0 where A, B, and C
are the components of its normal vector−⇀n = [A, B, C]; also called a Cartesian
equation

scalar multiplication—Distributive
Property: let m be a scalar and −⇀a and 

−⇀
b any 

vectors, then m(−⇀a +
−⇀
b ) = m−⇀a + m

−⇀
b

scalar multiplication of vectors: the
operation of multiplying a vector −⇀v by a
scalar k to produce a new vector k−⇀v
• if k > 0, k−⇀v has the same direction as −⇀v
• if k < 0, k−⇀v is opposite in direction to −⇀v
• if k = 0, k−⇀v is the zero vector

scalar triple product: an expression of the 

form −⇀a •
−⇀
b × −⇀c , where −⇀a ,

−⇀
b , and −⇀c are

vectors in 3-space

• when the value of the scalar triple product is
0, the three vectors are coplanar

Semicircle Theorem: if P is any point on a
semicircle with diameter AB, then ∠ APB = 90˚

Side-Splitting Theorem: the line that joins the
midpoint of two sides of a triangle is parallel to
and one-half as long as the third side

sigma notation: a concise way to express the
sum of a series using the capital Greek letter
sigma,

∑
, which corresponds to S, the first

letter of the word “sum”
The sum a1 + a2 + a3 + a4 + . . . + an can be 

written in sigma notation as 
n∑

k = 1

ak.

similar figures: figures that have the same
shape but not necessarily the same size

When two figures are similar, their
corresponding angles have equal measures,
and their corresponding sides are in proportion
(all have the same scale factor). The symbol ∼
is used to indicate similarity.

To find an unknown side of one similar figure,
use a proportion.
9
6

= 8
y

= 6
x

9 cm

8 cm

6 cm
6 cm

y

x

×
⇀
b ⇀

b

⇀a

⇀a
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Scale factor = 9
6

= 3 : 2

To find x, solve the following proportion.
3
2

= 6
x

3x = 12

x = 4

To find y, solve the following proportion.
3
2

= 8
y

3y = 16

y
.= 5.33

similar triangles: triangles with corresponding
angles having equal measures, and
corresponding sides being proportional

In similar triangles, corresponding angles are
equal; given �ABC is similar to �PQR, then:
∠ABC = ∠PQR

∠BAC = ∠QPR

∠ACB = ∠PQR
In similar triangles, the ratios of corresponding
sides are equal; given �ABC is similar to �PQR, 

then: AB
PQ

= BC
QR

= AC
PR

In similar triangles, the ratio of the areas are
equal to the squares of the ratios of the
corresponding sides; given �ABC is similar 
to �PQR, then:
area �ABC
area �PQR

=
(

AB
PQ

)2
=

(
BC
QR

)2
=

(
AC
PR

)2

Determine the length AD.

From the diagram, in �ABC and �DEC:

∠B = ∠E

∠C is a common angle

Therefore, �ABC ∼ �DEC, since two pairs of
corresponding angles are equal.

The ratios of the corresponding sides are equal:
AB
DE

= BC
EC

= AC
DC

Let y represent the length AD. To solve for y,
use the first and the third ratios above.

10
6.2

= y + 8
8

80 = 6.2(y + 8)

80 = 6.2y + 49.6

30.4 = 6.2y

y
.= 4.9

AC = y + 8; so, AD = 12.9
AD is approximately 12.9 m.

Sine Law: a trigonometric law used to solve
triangles

Use the Sine law in an oblique triangle where 
two angles and one side are known.

In any triangle ABC: sin A
a

= sin B
b

= sin C
c

and 
a

sin A
= b

sin B
= c

sin C

In �DEF, ∠D = 72˚ , DE = 8.5 cm, and
EF = 11.3 cm; calculate the measures of ∠F
and DF.

Use the Sine Law to calculate ∠F.
sin F

f
= sin D

d

Substitute the known measures.
sin F
8.5

= sin 72˚
11.3

Multiply each side by 8.5.

sin F = 8.5 sin 72˚
11.3.= 0.715 396

∠F
.= 46˚

Calculate the measure of ∠E.

Use the sum of the angles in a triangle.

∠E = 180˚ − 72˚ − 46˚

= 62˚

Use the Sine Law.
e

sin E
= d

sin D
e

sin 62˚
= 11.3

sin 72˚

Multiply each side by sin 62˚.

e = 11.3 sin 62˚
sin 72˚.= 10.49

DF is approximately 10.5 cm.

E

8.5 cm 11.3 cm

D F
72˚

A

B C

b

a

c

A

B

D

10 m 6.2 m

3 m

8 m

E C

A

B C Q R

P
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skew lines:  non-intersecting, non-parallel lines
in 3-space

slope: a measure of the steepness of a line

• the slope of a line segment joining 

P1(x1, y1) and P2(x2, y2) is

slope = rise
run

= �y
�x

= y2 − y1

x2 − x1

solving a linear system in 2 variables:
determining the values of the unknowns that,
when substituted for the unknowns in each
equation, result in a true statement

Solve this linear system:
x − 2y = 3 ➀

4x + 3y = 1 ➁

i) Using the Method of Substitution
Isolate x in ➀ to get x = 3 + 2y . ➂
Substitute ➂ in ➁ and solve for y.
4(3 + 2y) + 3y = 1

12 + 8y + 3y = 1

11y = −11

y = −1

Substitute y = −1 in ➂ .
x = 3 + 2(−1)

= 1
The solution is (1, −1).

ii) Using the Method of Elimination
Multiply ➀ by 4 to get 4x − 8y = 12.
Subtract ➁ from this new equation.
4x − 8y = 12

4x + 3y = 1

−11y = 11

y = −1

Solve for x. Substitute y = −1 into ➀ .
x − 2(−1) = 3

x = 1
The solution is (1, −1).

spreadsheet: a computer-generated
arrangement of data in rows and columns,
where a change in one value can result in
appropriate calculated changes in other values

square-based right pyramid: a solid with one
square face (base) and four lateral faces that are
congruent isosceles triangles with a common
vertex

sum of a geometric series: the total value of
all the terms in a geometric series; 

Sn = a(rn − 1)
r − 1

, r ≠ 1

sum of an arithmetic series:  the total value
of all the terms in an arithmetic series;  

Sn =
(

a + tn
2

)
n or Sn = n

2
[2a + (n − 1)d]

supplementary angles: two angles whose sum
is 180˚

x + y = 180˚, thus x and y are supplementary
angles.

symmetric equation of a line: an equation
that describes a line in R2 or R3 in terms of a
point on a line and a direction vector parallel to
the line without using a parameter

• in R2, the symmetric equation of the line
through A(a1, a2) with direction vector 
−⇀m = [m1, m2] is x − a1

m1
= y − a2

m2
, m1 ≠ 0,

m2 ≠ 0

• in R3, the symmetric equations of the line
through A(a1, a2, a3) with direction vector−⇀m = [m1, m2, m3] are
x − a1

m1
= y − a2

m2
= z − a3

m3
, m1 ≠ 0, m2 ≠ 0,

m3 ≠ 0

symmetrical: possessing symmetry; see line
symmetry and point symmetry

30-60-90 triangle: a triangle with angles 30˚,
60˚, and 90˚; the ratio of sides corresponding to
the angles is 1:

√
3: 2

60˚
2

1

30˚√
3

x y

8 cm
8 cm

10 cm
10 cm
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tail: the tail of vector 
−⇀
AB is the point A, also 

called the initial point of the vector 
−⇀
AB

tail-to-tail: a method of joining vectors so that
the tail of one vector meets the tail of the other

Tangent-Radius Theorem: a tangent to a
circle is perpendicular to the radius at the point
of tangency

tangent to a circle:  a line that intersects a
circle in exactly one point

tetrahedron:  a solid with four triangular faces

theorem: a statement that has been proved

torque: a measure of the rotational effect caused
by a force; measured in newton metres

• torque is a vector quantity; it is calculated 

using the formula 
−⇀
T = −⇀r × −⇀

F where −⇀r is
the radius vector from the centre of rotation 

to the point where the force 
−⇀
F is applied

translation: a transformation that moves all
points in the plane in a given direction through
a given distance; also called a slide

Determine the image of the point P(–3, 5) after
applying the translation (7, –1).

Let P’(x, y) represent the image of P. To apply
the translation, add 7 to the x-coordinate of P
and subtract 1 from the y-coordinate of P. 
The image point is P’(4, 4).

transversal: a line that intersects two or more
lines

Line t is a transversal.

trapezoid: a quadrilateral with only one pair of
opposite parallel sides

tree diagram: a branching diagram used to
show all possible outcomes of an event

Triangle Law of Vector Addition: a method
for adding vectors that are arranged head-to-

tail; to add −⇀a and 
−⇀
b , draw 

−⇀
b with its tail at 

the head of −⇀a ; the sum, −⇀a +
−⇀
b , is the vector 

from the tail of −⇀a to the head of 
−⇀
b , as shown

in the diagram

undefined terms: words that express notions
so fundamental that they cannot be defined
using other terms

Point, line, angle, and figure are undefined
terms.

unit vector: a vector with magnitude 1; for any 

non-zero vector −⇀u , 1∣∣−⇀u ∣∣ −⇀u is a unit vector in 

the same direction as −⇀u
vector: a quantity that has both magnitude and

direction

vector addition and scalar multiplication
properties:

• commutative law: −⇀a +
−⇀
b =

−⇀
b + −⇀a

• associative law:
−⇀a + (

−⇀
b + −⇀c ) = (−⇀a +

−⇀
b ) + −⇀c

• −⇀a +
−⇀
0 = −⇀a

• −⇀a + (−−⇀a ) =
−⇀
0

• distributive law:

k(−⇀a +
−⇀
b ) = k−⇀a + k

−⇀
b , where k is any

scalar

⇀a

⇀a
+
⇀b

⇀
b

t

r

tangent

A

B

tail (initial point)
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• distributive law: (s + t)−⇀a = s−⇀a + t−⇀a ,
where s, t are any scalars

• associative law: s(t−⇀a ) = (st)−⇀a , where s, t
are any scalars

vector equation of a line: an equation that
describes a line in R2 or R3 in terms of a point
on the line and a direction vector parallel to the
line

• in R2, the vector equation of the line through
A(a1, a2) with direction vector −⇀m = [m1, m2]
is [x, y] = [a1, a2] + t[m1, m2] , where t is any
real number

• in R3, the vector equation of the line through
A(a1, a2, a3) with direction vector −⇀m = [m1, m2, m3] is
[x, y, z] = [a1, a2, a3] + t[m1, m2, m3] ,

where t is any real number

vector equation of a plane: an equation that
describes a plane in terms of a point on the
plane and two non-collinear direction vectors
lying in the plane

• the vector equation of the plane through
A(a1, a2, a3) with direction vectors 
−⇀u = [u1, u2, u3] and −⇀v = [v1, v2, v3] is 
[x, y, z] = [a1, a2, a3] + s[u1, u2, u3]
+ t[v1, v2, v3], where s and t represent any
real numbers

vector operations: see geometric vectors and
Cartesian vectors

vertex: the corner of a figure or solid

whole numbers: the set of numbers 0, 1,
2, 3, …

work: when a constant force,
−⇀
F , moves an

object from point A to point B, the work done
is the product of the magnitude of the 

displacement vector 
−⇀
d = AB and the

magnitude of the force in the direction of the
displacement; measured in newton metres

• work is a scalar quantity calculated by the

formula 
−⇀
F •

−⇀
d

zero vector: a vector that has zero length and no 

specified direction; represented by 
−⇀
0
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Answers

Chapter 1  Geometric and 
Cartesian Vectors
1.1 Exercises, page 8

1. Parts c, e, and h are vectors and the rest are scalars.

2. Parts a, e, f, and h can be described by a vector.

3. a) 23 m/s, E b) 20 m, S
c) 34 km/h, SE d) 50 m/s2, NE e) 225 m, NW

4.
−⇀
CD =

−⇀
LM,

−⇀
EF =

−⇀
RS,

−⇀
AB =

−⇀
JK,

−⇀
NO =

−⇀
VW,−⇀

AB =
−⇀
PQ,

−⇀
JK =

−⇀
PQ

5. a)
−⇀
AD =

−⇀
BC,

−⇀
DC =

−⇀
AB

b)
−⇀
QT =

−⇀
TS,

−⇀
PT =

−⇀
TR,

−⇀
SR =

−⇀
PQ,

−⇀
SP =

−⇀
RQ

c)
−⇀
KJ =

−⇀
CL,

−⇀
KJ =

−⇀
LA,

−⇀
CL =

−⇀
LA,

−⇀
JL =

−⇀
BK,

−⇀
JL =

−⇀
KC,−⇀

BK =
−⇀
BC,

−⇀
LK =

−⇀
AJ,

−⇀
LK =

−⇀
JB ,

−⇀
AJ =

−⇀
JB

d)
−⇀
ED =

−⇀
AB,

−⇀
CD =

−⇀
AF,

−⇀
CB =

−⇀
EF,

−⇀
DG =

−⇀
GA,−⇀

BG =
−⇀
GE,

−⇀
FG =

−⇀
GC,

−⇀
AF =

−⇀
GE,

−⇀
BG =

−⇀
CD,−⇀

ED =
−⇀
GC,

−⇀
FG =

−⇀
AB,

−⇀
EF =

−⇀
GA,

−⇀
DG =

−⇀
CB,−⇀

AF =
−⇀
BG,

−⇀
GE =

−⇀
CD,

−⇀
ED =

−⇀
FG,

−⇀
GC =

−⇀
AB,−⇀

EF =
−⇀
DG,

−⇀
GA =

−⇀
CB

6.
−⇀
DE =

−⇀
EF,

−⇀
AB =

−⇀
BC,

−⇀
AB = −

−⇀
EF,

−⇀
AB = −

−⇀
DE

6. a)
−⇀
TR −

−⇀
QR b)

−⇀
RS −

−⇀
TS c)

−⇀
TS −

−⇀
TP d)

−⇀
TR −

−⇀
TP

7.
−⇀
0

8. a)
−⇀
AG b)

−⇀
EC c)

−⇀
DF d)

−⇀
HB

9. a) F b) F

11. b) Yes to all

1.4 Exercises, page 29
2. a) 1−⇀u b) 2−⇀u c) 3−⇀u d) 1−⇀u

e) 2−⇀u f) −1−⇀u g) −2−⇀u h) −3−⇀u
3. a) collinear b) Y is between X and Z.

4. BD = 2XY

5. a) 2−⇀u b) 2−⇀u + −⇀v c) −−⇀v − −⇀u
6. a) 0.5

−⇀
OQ +

−⇀
OP b)

−⇀
OP + 2

−⇀
OQ

c) 2
−⇀
OP + 1.5

−⇀
OQ d)

−⇀
OQ +

−⇀
OP

e) 2
−⇀
OP + 0.5

−⇀
OQ f)

−⇀
OQ + 3

−⇀
OP

7. a) No
b) i) −0.5−⇀a − 6

−⇀
b ii) 6.5−⇀a −

−⇀
b iii) 6−⇀a − 7

−⇀
b

8. a) i) 2−⇀a + 4
−⇀
b ii) 3

−⇀
b − 3−⇀a

iii) −2−⇀a − 2
−⇀
b iv) 4−⇀a − 2

−⇀
b

b) i) −5−⇀a −
−⇀
b ii) −⇀a − 5

−⇀
b iii) 6−⇀a

iv) −2−⇀a + 6
−⇀
b v) 7−⇀a − 5

−⇀
b vi) 4−⇀a + 6

−⇀
b

10. a) i ) F ii) T iii) F
b) 3

√
2 cm

11. a)Yes b) No

1.2 Exercises, page 15
1. a)

−⇀
AC b)

−⇀
AD c)

−⇀
BA d)

−⇀
BA e)

−⇀
CB f)

−⇀
0

2. a)
−⇀
PQ b)

−⇀
QU c)

−⇀
RS d)

−⇀
PS e)

−⇀
UV f)

−⇀
SR

3. a)
−⇀
HC b)

−⇀
HB c)

−⇀
FC d)

−⇀
0

4. a)
−⇀
AE b)

−⇀
AE c)

−⇀
CD d)

−⇀
BF e)

−⇀
AC f)

−⇀
0

6. a)
−⇀
KR b)

−⇀
KS c)

−⇀
MR d)

−⇀
NM e)

−⇀
KM f)

−⇀
0

7. a)
−⇀
DB +

−⇀
BA b)

−⇀
CB +

−⇀
BD c)

−⇀
CD +

−⇀
DB

d)
−⇀
AD +

−⇀
DB e)

−⇀
DC +

−⇀
CB f)

−⇀
BD +

−⇀
DC

8. a) −⇀x +
−⇀
0 = −⇀x

12.
−⇀
0

13. a)
−⇀
0 b) Vertices of a regular pentagon

14. a) 11.7 km/h b) 59˚ c) 72 m

15. a) 53.1˚ b) 0.9 min

16. a)
−⇀
NR b)

−⇀
RM

17. b) 18.4 N

18. a) Yes c) No

1.3 Exercises, page 22
1. a)

−⇀
CA b)

−⇀
DA c)

−⇀
CA d)

−⇀
CE

2. a)
−⇀
TQ b)

−⇀
PT c)

−⇀
UQ d)

−⇀
PU

5. a) i)
−⇀
AC ii)

−⇀
DB iii)

−⇀
CA iv)

−⇀
BD

b) −⇀v + −⇀u , −⇀u + −⇀v , Commutative

11. b) The heads lie on a straight line.

12. a)
−⇀
AB + 0.5

−⇀
AD,

−⇀
AD + 0.5

−⇀
AB

b) 4
3

−⇀
AM − 2

3

−⇀
AN, 4

3

−⇀
AN − 2

3

−⇀
AM

13. a) −⇀v + −⇀u b) 2−⇀u + −⇀v c) −⇀u + −⇀v d) 2−⇀u − −⇀v
14. a) −⇀u + −⇀v b) −⇀v + 2−⇀u c) 3−⇀u + −⇀v d) −⇀v
15. a) −⇀u , −⇀v + −⇀u , −⇀v , −−⇀u , −−⇀v − −⇀u , −−⇀v

b) 2−⇀u + −⇀v , −⇀u + 2−⇀v , −⇀v − −⇀u , −2−⇀u − −⇀v , −−⇀u − 2−⇀v ,−⇀v + −⇀u
17. a)

−⇀
AR = −−⇀u + 7−⇀v ,

−⇀
BQ = −2−⇀u + 6−⇀v ,

−⇀
CP = −3−⇀u + 5−⇀v ,−⇀

DO = −4−⇀u + 4−⇀v ,
−⇀
EN = −5−⇀u + 3−⇀v ,

−⇀
FM = −6−⇀u + 2−⇀v ,−⇀

GL = −7−⇀u + −⇀v
18. a) 0 • −⇀x = 0, 1−⇀x = −⇀x
21. a) 3 b) 1

4
c)

√
19 d)

√
19 e)

√
7

2
f)

√
7

1.5 Exercises, page 40

1.
−⇀
AB = [3, −1],

−⇀
CD = [2, −5],

−⇀
EF = [−5, 1],

−⇀
GH = [4, 4],−⇀

IJ = [−2, −2],
−⇀
KL = [−3, 0],

−⇀
MN = [−1, 4],

−⇀
PQ = [2, 3]

2. a) [1, 3] b) [3, 3] c) [−5, −4] d) [4, −5]

3. a) B(2, 3) b) B(−8, −3) c) B(−10, 1)

4. a) (−3, 2) b) (7, 1) c) (−6, −10)

5. a) i) [6, 4] ii) [9, 6]
iii) [15, 10] iv) [−12, −8]

c) i) 2
√

13 ii) 3
√

13 iii) 5
√

13 iv) 4
√

13

6. a) [12, 9] b) [2, 1.5]
c) [8, 6] d) [0.8, 0.6]
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23. 8√
5

, 4√
5

and −8√
5

, −4√
5

24. −2 ±
√

21

25. No

1.6 Exercises, page 50
1. a) [0, 150] b) [−56.6, −56.6] c) [200.8, 286.7]

d) [70, −121.2] e) [−28.2, 10.3]

2. 61 N

3. a) 556 N b) 36˚

4. 26.5 N, 139˚

5. 72.6 N, 56.8˚

6. 28.3 N at 131˚

8. 115.5 N, 57.8 N

9. 5.8 N

10. 832.3 km/h at a bearing of 130.1˚

11. 614.9 km/h at a bearing of 037.4˚

6. a) −⇀a + −⇀c , −−⇀a + −⇀c b) Rhombus

7. These are properties of dot products: −⇀a •
−⇀
b =

−⇀
b • −⇀a ,

−⇀a • (
−⇀
b + −⇀c ) = −⇀a •

−⇀
b + −⇀a • −⇀c , −⇀a • −⇀a =

∣∣−⇀a ∣∣2
,

(k−⇀a ) •
−⇀
b = −⇀a • (kb) = k(−⇀a •

−⇀
b ), −⇀a •

−⇀
0 = 0

These do not correspond to dot products: (xy)z = x(yz),
a × 1 = a

8. c)
∣∣−⇀a +

−⇀
b

∣∣2 =
∣∣−⇀a ∣∣2 +

∣∣−⇀b ∣∣2

10. a) [3.20, −1.60] b)
[

48
13

, 32
13

]
d) No

11. a)
[

12
13

, 18
13

]
b)

−⇀
0

c) [−4.20, −1.40] d) 0.9
−⇀
i + 0.30

−⇀
j

12. b) i) [3, 6] ii) [−4, 2]
iii) [4.83, 2.76] iv) [2.15, 1.23]

13. a) 2
7

−⇀
b

14. a) −4
√

2
11

−⇀v
15. a) Yes b) Yes
12. a) 68.6˚ b) 598 km/h c) 51 min

13. 42.3 km/h

1.7 Exercises, page 55
1. a) 45˚ b) 135˚ c) 60˚

2. a) 5.1 b) −5.2 c) 0

3. a) 26 b) −1 c) 0 d) 19

4. a) 1 b) 1 c) 0

6. a) 78.7˚ b) 150.3˚ c) 97.8˚ d) 90˚

8. a) ∠ ABC = 90˚ ∠ BAC = 71.6˚ ∠ ACB = 18.4˚

10. a) i) 40 ii) 0 iii) 40

16. a) −⇀a ↓ −⇀
b b)

−⇀
b

c) k−⇀a d) −⇀a ↓ −⇀
b

17. a) Yes

18.
[

22
5

, −4
5

]
,
[

8
5

, 44
5

]
or [−2, 4], [8, 4]

19. b) xy = 1
4

(x + y)2 − 1
4

(x − y)2

Chapter 1 Review Exercises, page 69
1. Distance, speed, mass, displacement, velocity, weight

3. a)
−⇀
AO =

−⇀
OC,

−⇀
DC =

−⇀
AB,

−⇀
BO =

−⇀
OD,

−⇀
AD =

−⇀
BC

b)
−⇀
AD = −

−⇀
CB,

−⇀
OD = −

−⇀
OB,

−⇀
AO = −

−⇀
CO,

−⇀
DC = −

−⇀
BA

4. a)
−⇀
HA +

−⇀
AE b)

−⇀
GC +

−⇀
CF
14. a) 6
−⇀
i − 4

−⇀
j b) −6

−⇀
i − 3

−⇀
j c) 5

−⇀
i − −⇀

j

d)
−⇀
i − 3

−⇀
j e) 8

−⇀
i − 10

−⇀
j f) 7

−⇀
j

15. a) [6, 4], [2, −2] c) 2
√

13, 2
√

2 e) No

16. a) 2−⇀u + 4−⇀v
17. a) −2−⇀v + 0.5−⇀w b) −0.5−⇀u + 0.25−⇀w
18. a) 5−⇀u − 2−⇀v
19. a) 0.4−⇀v + 0.2−⇀w b) 2.5−⇀u − 0.5−⇀w
20. a) [6, 2], [4, 3], [2, 4], [0, 5], [−2, 6], [−4, 7], [−6, 8]

d) i) Adds [2, 4] to each answer.
ii) Adds [−1, 2] to each answer.

21. a) [−3, 8], [−1, 5], [1, 2], [3, −1], [5, −4], [7, −7] d)Yes[ ] [ ]

19. a) −10 b) 7 c) 6 d) −126

20. a) |F| cos θ
21. Approximately 2600 J

1.8 Exercises, page 64
1. a) −⇀a •

−⇀
b + −⇀a • −⇀c b)

∣∣−⇀a ∣∣2 + −⇀a •
−⇀
b

c)
∣∣−⇀u ∣∣2 + 2−⇀u • −⇀v d) 6

∣∣−⇀u ∣∣2 − 9−⇀u • −⇀v
2. a)

∣∣−⇀a ∣∣2 −
∣∣−⇀b ∣∣2

b)
∣∣−⇀a ∣∣2 − −⇀a •

−⇀
b − 2

∣∣−⇀b ∣∣2

c) 4
∣∣−⇀a ∣∣2 + 9−⇀a •

−⇀
b + 2

∣∣−⇀b ∣∣2

d) 6
∣∣−⇀a ∣∣2 + 5−⇀a •

−⇀
b − 6

∣∣−⇀b ∣∣2

3. a) No b) No

5. a) No
c) The 3 dot products would be equal.

11. a) i) 11 ii) 11 iii) −11 iv) −11
d) All dot products equal zero.

c)
−⇀
DH +

−⇀
HG d)

−⇀
DG +

−⇀
GC

5. a)
−⇀
PQ b)

−⇀
RB c)

−⇀
GE d) 4

−⇀
DR
7. a) [6, 2], [−4, 2], [−6, −2], [4, −2]
b) 2

√
10, 2

√
5, 2

√
10, 2

√
5 c) Parallelogram 

8. a) [1, 8], [7, −4], [−1, −8], [−7, 4]
b)

√
65,

√
65,

√
65,

√
65 c) Rhombus

9. b) i) Not collinear ii) Collinear

10. a) i) [1, −2] ii) [12, −4] iii) [1, 3]
iv) [−5, 5] v) [8, −6] vi) [−13, 11]

12. a) [11, −9] b) [2, 22] c) [−5, −29]

12. b) i) No ii) Yes

13. b) i) Yes ii) No

14. [5, 2], [−2, 5], [−2, 5], or [5, 2], [2, −5], [2, −5]

15. [4, 2], [−4, 8], [−4, 8], or [4, 2], [4, −8], [4, −8] or [4, 2],
[−1, 2], [−1, 2], or [4, 2], [1, −2], [1, −2]

17. b) i) [4, 8] ii) [8, 0] iii) [4, 2]

18. a) −4 b) 15
4
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22. a) 2∣−⇀u ∣2 + 7−⇀u • −⇀v + 3∣−⇀v ∣2

b) 9
∣∣−⇀a ∣∣2 − 16

∣∣−⇀b ∣∣2

23. b) −5
√

3
6

−⇀
b , −3

√
3

10

−⇀
b

Chapter 1 Self-Test, page 72
1. a)

−⇀
BD b)

−⇀
AB c)

−⇀
AC

2.
−⇀
0

3. 414.9 km/h, 134.5˚

4. a)

[
−

√
5

5
, −2

√
5

5

]
b)

[√
13,

√
39

]
c) [3.2, 6.4]

4. a)
√

29 b) −4√
29

, 2√
29

, −3√
29

c) α .= 137.97˚; β .= 68.20˚; γ .= 123.85˚

d) Direction
angle

Direction
cosine

N ON

(0, 5, 4)
41

cos α = 0

cos γ = 1

α = 90˚

β = 39˚
.

γ = 51˚
.

cos β = 5
41

cos γ = 4
41
5. 10 or 4

6. −⇀a +
−⇀
b , −k−⇀a − �

−⇀
b , k = �

Chapter 2  Vectors in Three Dimensions
2.1 Exercises, page 80

1. a) (4, 0, −3) b) −⇀v = [4, 0, −3] c) 5

d) cos α = 4
5

, cos β = 0; cos γ = −3
5

e) α .= 36.87˚; β = 90˚; γ .= 126.87˚

2. a) R b) R and S c) Q d) Q e) 7 units

3. a) 5
√

2 b) 3
5
√

2
, 1√

2
, 4

5
√

2

c) α .= 64.90˚; β = 45˚; γ .= 55.55˚

4

2

 3

(−4, 0, 0)

(0, 2, 0)

(0, 0, −3)

(−4, 2, 0)

(−4, 0, −3)

(0, 2, −3)

5

13

2 5

α = 90˚

β = 90˚

γ = 180

α = 153˚
.

β = 63˚
.

γ = 90˚

α = 90˚

α = 90˚

β = 0˚

γ = 90˚

α = 180˚

β = 90˚

γ = 90˚

α = 143˚
.

β = 90˚
γ 127˚=.

β = 56˚
.

γ = 146˚
.

cos α = −2 5
5

cos β = 5
5

cos α = −4
5

cos γ = −3
5

cos β = 2
13

cos γ = −3
13

cos α = −1

cos α = 0

cos β = 0

cos γ = 0

cos α = 0

cos β = 1

cos γ = 0

cos γ = 0

cos α = 0

cos β = 0

cos β = 0

cos γ = −1
6.
−⇀
0

8. a)
−⇀
AD −

−⇀
AF b)

−⇀
DB −

−⇀
DE

c)
−⇀
AB −

−⇀
AC d)

−⇀
BE −

−⇀
BA

10. a) 2−⇀u b) 2−⇀u + −⇀v c) −−⇀v − −⇀u
11.

−⇀
CD + 0.5

−⇀
CB;

−⇀
CB + 0.5

−⇀
CD

12. a) i) [−3, 6] ii) [−2, 4] iii) [1, −2] iv) [4, −8]
b) i) 3

√
5 ii) 2

√
5 iii)

√
5 iv) 4

√
5

13. a) [4, 2], [−8, 6], [4, −8] b) Scalene, right triangle

14. a) 10−⇀u + 4−⇀v
15. a) 164.4 N at 24˚ to the 90 N force, 164.4 N at 180˚ to the

resultant force

16. 543.5 N at a bearing of 125.2˚

17. 15.3 m/s, 66.4˚ to shore

18. a) 36.9˚ b) 94.4˚ c) 81.9˚ d) 135˚

19. 60.6˚, 31.3˚, 88.1˚

20. a) 1 b) 9 c) 37∣ ∣ ∣ ∣

d) Direction
angle

Direction
cosine

N

3

5

 4

   

5

(3, 0, 0)

(0, 5, 0)

(0, 0, 4)

(3, 0, 4)

(3, 5, 0)
34

ON

cos α = 1

cos β = 0

cos β = 0

cos γ = 0

cos α = 0

cos β = 1

cos γ = 0

cos α = 0

cos β = 0

cos γ = 1

α = 90˚

β = 90˚

γ = 0˚

α = 53˚

β = 90˚
.γ =

.

37˚

γ = 90˚

α = 90˚

β = 0˚

γ = 90˚

α = 0˚

β = 90˚

γ = 90˚

α = 59˚
.

β = 31˚
.

cos α = 3
34

cos β = 5
34

cos α = 3
5

cos γ = 4
5
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20.
[√

42,
√

42, 4
]

21. P = (0, −7, 0)

23. a) 2

2.2 Exercises, page 88
1. a) [4, 1, −1] b) [6, −3, 7]

c) [−5, 1, −3] d) [10, −2, 6]
e) [3, 3, −5] f) [17, −7, 17]

2. a) [8, 7, −3] b) [−4, −1, −1]
c) [−4, −6, 4] d) [3, 2, −0.5]
e) [−8, −7, 3] f) [−10, 0, −5]

3. a) 2
−⇀
i + 3

−⇀
j +

−⇀
k b) 4

−⇀
i − −⇀

j − 5
−⇀
k

c) 5
−⇀
i + 4

−⇀
j −

−⇀
k d) 5

−⇀
i − 3

−⇀
j − 8

−⇀
k

e) 11
−⇀
i + 13

−⇀
j + 2

−⇀
k f) −9

−⇀
i + 4

−⇀
j + 13

−⇀
k

10. a) 90˚, 90˚, 90˚, 90˚
b) Rectangle

11. a) k = −4 b) k = −5
2

c) k = 5 or −2

12. x = −1
5

, y = −7
5

13. a) i) z = −3, y = −5 ii) x = −1
5

, z = 3
5

iii) x = −1, y = 5 iv) x = −2, y = 10

14. a) 8 b) 22 c) −7 d) 208

15. a) −3 b) −34 c) −14 d) −2

16. a) ∠ CAB
.= 35.26˚ b)

∣∣−⇀AB ↓ −⇀
AC

∣∣ = 2
√

6
3

17. c) 5√
30

18. a) −⇀u ↓ −⇀v =
[

−11
7

, 11
14

, −33
14

]
; 
∣∣−⇀u ↓ −⇀v ∣∣ = 11

√
14

14
d) PQ = [−2, 1, 5]; ∣PQ∣ = 30

8. [9, 11, −3]

9. [9, −5, 6]

10. a)
∣∣−⇀AB

∣∣ =
√

17; 
∣∣−⇀AC

∣∣ =
√

21; 
∣∣−⇀BC

∣∣ =
√

38

b)
(√

17
)2 +

(√
21

)2 =
(√

38
)2

12. D = (2, −1, 5)
b) (−2, −3, 10); (6, −7, −8); (2, 9, 4)
c) The order of the vertices is given in part a but not in

part b.

13. α = 0˚ or 180˚, β = 90˚, γ = 90˚

14. α = cos−1

(
x√

x2 + y2

)
, β = cos−1

(
y√

x2 + y2

)
, γ = 90˚

17. a) 54.7˚ or 125.3˚

19.
[

−9√
17

, −6√
17

, 6√
17

]

15. a) Yes b) Yes c) No

17. a) Yes b) No c) Yes

18. b) i) Yes ii) Yes iii) No

2.3 Exercises, page 95
1. a) 3 b) 0 c) 7 d) −9

2. a) 1 b) 1 c) 1 d) 0 e) 0 f) 0

3. a) 90˚ b) 57.5˚ c) 70.5˚ d) 135.7˚

4. a) B = 60˚, C = 90˚, A = 30˚
b) P

.= 68.33˚, R
.= 89.05˚, Q

.= 22.62˚
c) R

.= 71.07˚, S
.= 37.86˚, T

.= 71.07˚

5. [−1, 6, 5]

9. b) A
.= 72˚, B

.= 108˚
C

.= 72˚, D
.= 108˚
5. Not if the point is on one of the coordinate planes

6. a) Magnitude:
√

14; Direction cosines: cos α = 1√
14

,

cos β = 2√
14

, cos γ = 3√
14

Direction angles: α .= 74˚, β .= 58˚, γ .= 37˚

b) Magnitude:
√

5; Direction cosines: cos α = 0,

cos β = 1√
5

, cos γ = − 2√
5

Direction angles: α = 90˚, β .= 63˚, γ .= 153˚

c) Magnitude: 2
√

2; Direction cosines: cos α = 1√
2

,

cos β = −1√
2

, cos γ = 0

Direction angles: α = 45˚, β = 135˚, γ = 90˚

d) Magnitude: 4; Direction cosines: cos α = −1,
cos β = 0, cos γ = 0;
Direction angles: α = 180˚, β = 90˚, γ = 90˚

e) Magnitude:
√

26; Direction cosines: cos α = 3√
26

,

cos β = −4√
26

, cos γ = −1√
26

Direction angles: α .= 54˚, β .= 142˚, γ .= 101˚

f) Magnitude: 2
√

3; Direction cosines: cos α = − 1√
3

,

cos β = 1√
3

, cos γ = − 1√
3

Direction angles: α .= 125˚, β .= 55˚, γ .= 125˚

7. a)
−⇀
PQ = [−1, 0, −2]; 

∣∣−⇀PQ
∣∣ =

√
5

b)
−⇀
PQ = [−2, 6, −4]; 

∣∣−⇀PQ
∣∣ = 2

√
14

c)
−⇀
PQ = [2, −3, 3]; 

∣∣−⇀PQ
∣∣ =

√
22

−⇀ ∣−⇀∣ √

5. a)
−⇀
b = −2

3
−⇀a + 1

3
−⇀c b) −⇀a = −2

3
−⇀a + 1

2
−⇀c

7. c) [8, −8, 4] d)
[
1, −1, 1

2

]
c) [4, −4, 2] d)

[
2
3

, −2
3

, 1
3

]
8. a) α .= 48.2˚; β .= 131.8˚; γ .= 70.5˚

b) α .= 48.2˚; β .= 131.8˚; γ .= 70.5˚
c) α .= 48.2˚; β .= 131.8˚; γ .= 70.5˚
d) α .= 48.2˚; β .= 131.8˚; γ .= 70.5˚

9. a) −⇀v1 = [6, 4, −2] , −⇀v2 = [−6, −4, 2]

b) −⇀v1 =
[

3√
14

, 2√
14

, −1√
14

]
, −⇀v2 =

[
−3√
14

, −2√
14

, 1√
14

]
10. a)

[
4
5

, 3
5

, 0
]

and 
[

−4
5

, −3
5

, 0
]

b)
[

−2
3

, 1
3

, 2
3

]
and 

[
2
3

, −1
3

, −2
3

]
c)

[
−1

3
√

2
, 4

3
√

2
, 1

3
√

2

]
and 

[
1

3
√

2
, −4

3
√

2
, −1

3
√

2

]
d)

[
2√
38

, −3√
38

, 5√
38

]
and 

[
−2√
38

, 3√
38

, −5√
38

]
11. a) No b) Yes c) Yes

12. b) α .= 109˚; β .= 119˚; γ .= 36˚
c) α .= 59˚; β .= 40˚; γ .= 113˚,

α .= 121˚, β .= 140˚, γ .= 67˚

13. b) i) Yes ii) No iii) Yes

14. a) −⇀w = 2−⇀u − 3−⇀v b) −⇀u = 3
2
−⇀v + 1

2
−⇀w

c) −⇀v = 2
3
−⇀u − 1

3
−⇀w
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3 3 3 3

19.
−⇀
PQ ↓ −⇀

RS =
[

205
33

, −82
33

, −82
33

]
22. b) 77.4˚

2.4 Exercises, page 106
1. Because −⇀a and 

−⇀
b define a plane which −⇀a ×

−⇀
b is

perpendicular to.
Because sin 0 = 0

2. a) 86.04, ceiling b) 98.30, floor

6. a) [1, 1, 1] b) [−9, −3, 5]
c) [5, 17, 35] d) [−13, −12, 16]

7. Yes

8. a) 3 units2 b)
√

29 units2

c)
√

129 units2 d)
√

90 units2

9. a) [13, −3, −2] c)
√

182

10. a) [−4, 8, −4] b) [16, 22, −7]
c) [−4, −2, −4] d) [5, −15, 0]

11. a) [0, 0, 0] b) [0, 0, 0] c) [0, 0, 0]
d) [0, 0, 1] e) [0, 0, −1] f) [1, 0, 0]
g) [−1, 0, 0] h) [0, 1, 0] i) [0, −1, 0]

13. a)
√

42 units2 b)
√

75 units2

14. a) 3 units2 b)
√

70
2

units2

15. a)
−⇀
AB = [2, 3, 4],

−⇀
BC = [−4, −1, −1] ,

−⇀
CA = [2, −2, −3]

6. Yes

7. Yes

8. a) −3 b) 39

9. a) A
.= 66˚, B = 90˚, C

.= 24˚
b) [0, 2, 0]

10. a) Yes b) No c) Yes d) Yes e) Yes

11. a)
[
− 7

10
, 0, 21

10

]
b) 7

√
10

10

c)
[

7
11

, 21
22

, 21
22

]
d) 7

√
22

22

12. Answers may vary. [1, 0, −1]

15.

[ √
3

3
, −

√
3

3
, −

√
3

3

]
,

[
−
√

3
3

,
√

3
3

,
√

3
3

]
16. a) [1, 2, 0] b) [−1, −2, 0] c)

√
5

17.
√

3

18. y = 3, x = 2

19. a) False b) True c) True

d) False e) True f) True g) True

20. a) i) Magnitude: increased by a factor of 2,
direction: unchanged

ii) Magnitude: unchanged, direction: opposite

b) 90˚ because sin θ has a maximum of 1 at θ = 90˚
b) i) [1, −14, 10] ii) [1, −14, 10] iii) [1, −14, 10]

16. a) 30˚ or 150˚

18. a) τ .= 30.3 N•m c) Upward

2.5 Exercises, page 114
1. a) 0 b) 0

3. a)
−⇀
0 b)

−⇀
0

4. a) Not coplanar b) Coplanar

c) Not coplanar

5. a) Not coplanar b) Coplanar

c) Not coplanar

7. a) (−26, 26, −26) b) (−26, 26, −26)

c) (−26, 26, −26)

Chapter 2  Self-Test, page 122
2. a) 20 b) [9, −14, −11]

c) 44.9˚ d)
[

30
19

, −20
19

, 50
19

]
e) 10

√
38

19

5. a) 10 b) θ .= 72˚ c) t = 3

d)
[

1
3

, −2
3

, 5
3

]
e) [26, −12, −10]

6. Yes

7. 5
√

2

8. a) 0 b)
[

2√
5

, 1√
5

, 0
]

and
[

−2√
5

, −1√
5

, 0
]

Chapter 3  Equations of Lines and Planes
3.1 Exercises, page 131
Answers may vary for exercises 2–5.
10. a) (−18, −18, −18) b) (−27, −27, −27)

c) (−45, −45, −45)

Chapter 2  Review Exercises, page 119

1. a)
√

21

b) cos α = 4
√

21
21

, cos β =
√

21
21

, cos γ = 2
√

21
21

c) α = 29.2˚, β = 77.4˚, γ = 64.1˚

2. a) α .= 56.3˚, β .= 33.7˚, γ = 90˚

b) α .= 125.3˚, β .= 54.7˚, γ = 54.7˚

2. a) (2, −3) b) (7, −2), (12, −1), (19, 0)
c) [x, y] = [7, −2] + s[10, 2]

3. a) (−1, 5) b) (1, 6), (3, 7), (5, 8)
c) x = 1 − 2s, y = 6 − s

4. a) (−4, 1) b) (1, −1), (6, −3), (11, −5)

c) x − 1
5

= y + 1
−2

5. a) [x, y] = [7, −3] + t[−1, 2]
b) x = 7 − t, y = 2t − 3 c) x − 1

−1
= y + 2

2
6. a) x = t, y = 0 b) x = 0, y = t
b) −⇀u ↓ −⇀v =
−⇀
0 ; 

∣∣−⇀u ↓ −⇀v ∣∣ = 0

c) −⇀u ↓ −⇀v =
[

−9
14

, 27
14

, 9
7

]
;
∣∣−⇀u ↓ −⇀v ∣∣ = 9

√
14

14

d) −⇀u ↓ −⇀v =
[

−2 , 1 , −1
]

; 
∣∣−⇀u ↓ −⇀v ∣∣ =

√
6

3. a) [1, 9, 2] b) [10, −1, −8]

c) [15, −8, −14]

4. Yes

5. Yes
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Answers may vary for exercises 7–11.
7. a) x = 3 + 3t, y = −2 + 3t

b) (9, 4), (0, −5), (−3, −8)

8. a) (2, −1), (−2, −4), (6, 2)
b) (−5, 8), (−3, 3), (−1, −2)

9. a) [x, y] = [4, 1] + t[−3, 1]; x = 4 − 3t, y = 1 + t; 
x − 4
−3

= y − 1
1

b) [x, y] = [−6, 2] + t[5, −2]; x = −6 + 5t, y = 2 − 2t; 
x + 6

5
= y − 2

−2
c) [x, y] = [2, −3] + t[0, 1]; x = 2, y = −3 + t; 

no symmetric equations

10. a) y = 2
3

x + 4 b) x = 3t, y = 2t + 4

c) x
3

= y − 4
2

11. a) i) x = 2 + t, y = −4 + 2t ii) x − 2
1

= y + 2
2

iii) y = 2x − 8 iv) 2x − y − 8 = 0

13. A, B, D

14. The equations all represent the same line.

15. a) (3, 2); 45˚ b)
(

3
2

, 5
)

; 86.8˚

16. a) The lines do not intersect. b) (12, −4)

17. a) (7, 0); (0, 7) b) (−7, 0); 
(

0, 14
3

)
Answers may vary for exercises 18 and 19.
18. a) [x, y] = [4, 0] + t[0, 1]; x = 4, y = t

b) [x, y] = [0, 3] + t[1, 0]; x = t, y = 3
c) [x, y] = [0, −2] + t[1, 3]; x = t, y = −2 + 3t
d) [x, y] = [−4, 0] + t[−2, 1]; x = −4 − 2t, y = t

19. a) x = −4t + 5, y = 2 − 3t b) x = 2t, y = 1 − t

20. 59˚

21. y = −2x + 7

22. a) 45˚, 45˚ b) 53.1˚, 36.9˚

23. (6, 6) or (8, 5)

24. a)
(

28
3

, 13
3

)

2

4

6
y

x
0 2 4 6 8 10

A(2, 3)
B(9, 2)

28
3

, 13
3

C

2

4

6

8
y

x
0 2 4 6 8 10

(6, 6)
(8, 5)

A(2, 3)
B(9, 2)

b)
(

8
3

, 23
3

)

25. a) 30˚ or 150˚
b) x = t, y = 4 +

√
3t; x = t, y = 4 −

√
3t

c)

3.2 Exercises, page 141
Answers may vary in exercises 1–3.

1. a) (5, −4, 1) b) (8, −2, 0), (11, 0, −1), (14, 2, −2)
c) [x, y, z] = [8, −2, 0] + s[−3, −2, 1]

2. a) (2, −3, 4) b) (3, −1, 1), (4, 1, −2), (5, 3, −5)
c) x = 3 − s, y = −1 − 2s, z = 1 + 3s

3. a) (4, 3, −2) b) (6, 2, 1), (8, 1, 4), (10, 0, 7)

c) x − 6
−2

= y − 2
1

= z − 1
−3

4. No; substituting D into the symmetric equations does not
give three equal ratios.

Answers may vary in exercises 5–9.
5. a) [x, y, z] = [3, −2, 5] + t[−1, 4, −3]

b) x = 3 − t, y = 4t − 2, z = 5 − 3t

c) x − 3
−1

= y + 2
4

= z − 5
−3

6. a) x = t, y = 0, z = 0 b) x = 0, y = t, z = 0
c) x = 0, y = 0, z = t

8. a) x = 5 − t, y = 1 + 4t, z = −3 + 2t
b) (3, 9, 1), (2, 13, 3), (1, 17, 5)

9. a) (2, 3, −1), (3, 1, −2), (4, −1, −3)
b) (1, 0, 1), (4, 1, −1), (7, 2, −3)
c) (−3, 5, 2), (−5, 6, 2), (−7, 7, 2)
d) (−4, −2, 3), (−4, 1, 7), (−4, 4, 11)

10. a) The line is parallel to the xy-plane, 2 units above it.
b) The line is parallel to the yz-plane, 4 units behind it.

11. a) [x, y, z] = [2, −1, 3] + t[−1, 3, 5]; x = 2 − t,

y = −1 + 3t, z = 3 + 5t; x − 2
−1

= y + 1
3

= z − 3
5

b) [x, y, z] = [4, −2, 1] + t[−5, 2, 2]; x = 4 − 5t,

y = −2 + 2t, z = 1 + 2t; x − 4
−5

= y + 2
2

= z − 1
2

c) [x, y, z] = [5, −1, 0] + t[0, 4, −4]; x = 5,

y = −1 + 4t, z = −4t; no symmetric equations

d) [x, y, z] = [3, −1, −1] + t[1, 0, 0]; x = 3 + t,
y = −1, z = −1; no symmetric equations

y

x
0 4

A(0, 4)

2

4

6

8
y

x
0 2 4 6 8 10

A(2, 3)
B(9, 2)

8
3

, 23
3

C
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26. b) m , p and a are coplanar.

28. b) x + 8
2

= y + 7
4

= z
1

29. t is the distance from A to P(x, y, z).

3.3 Exercises, page 152
Answers may vary in exercises 1–3.

1. a) (2, 6, −5) b) (6, 8, −6), (1, 9, −4), (5, 11, −5)
c) −⇀p = (6, 8, −6) + s(1, −3, −1) + t(−4, −2, 1)

2. a) (3, 1, 5) b) (5, 2, 3), (1, 4, 4), (3, 5, 2)
c) x = 5 + 2s − 2t, y = 2 − 3s − t, z = 3 + s + 2t

3. a) (3, 0, 0), (0, −6, 0), (0, 0, 2)
b) x = 3 + s − 3t, y = 2s, z = 2t

4. A, D

5. No

6. Yes

25. a) 4x − y + 3z − 26 = 0
b) The locus is a plane perpendicular to 

−⇀
OA containing the

point A and the vector 
−⇀
AP.

28. a) Answers may vary. −x + y + z = 0
b) 4; x + y + z = 0, −x + y + z = 0, x − y + z = 0,

x + y − z = 0

3.4 Exercises, page 160
3. a) L2; t can only take on one value.

b) L3; t can take on any value. c) L1 is parallel to the plane.

4. a) x + 3y − z − 6 = 0 b) 3x − y − 5 = 0

5. x − 2y − z − 5 = 0

6. a)
(

4, −7
4

, 7
2

)
b) None

c) All points on the line d)
(

−21
17

, −20
17

, 1
17

)
e) All points on the line f) None g) (3, −1, 2)
e) [x, y, z] = [−2, 0, 5] + t[0, 1, 0]; x = −2, y = t, z = 5; 
no symmetric equations

12. c

13. They all represent the same line.

14. a) (−4, 3, −4) b) (−7, −7, −3)

15. a) The lines do not intersect. b) (1, 5, −1)
c) (−3, −3, −3)

17. a) Answers may vary. x = 2 − t, y = 2, z = 2 + t; 
x = 2, y = 2 − t, z = 2 − t; x = 2 − t, y = 2 − t, z = 2; 
x = −2, y = −2 + t, z = 2 − t; x = −2 + t, y = −2, z = 2 − t; 
x = 2 − t, y = −2 + t, z = −2

b) 60˚ or 120˚

19. a) i)
(

11
2

, −1
2

, 0
)

;
(

17
3

, 0, −1
3

)
; (0, −17, 11)

ii) The line does not intersect the xy-plane; (
−22

3
, 0, −2

)
; (0, 11, −2)

20. a) One of the parametric equations has only a constant term.
b) There are no symmetric equations.

21. a) Two of the parametric equations have only a constant
term.

b) There are no symmetric equations.

22. Answers may vary.
b) x = 8

5
+ t, y = 22

5
+ 2t, z = 19

5
+ 2t

23. Answers may vary.
x = 2 + t, y = 5 + 2t, z = 3 + 2t

24. Answers may vary. x + 2√
2

= y − 1
2

= z − 3√
2

25. a) 45˚ or 135˚ 
b) Answers may vary. x =

√
2t, y =

√
2t, z = 4 + 2t; 

x =
√

2t, y = 
√

2t, z = 4 − 2t
c)

−⇀ −⇀ −⇀

2 4
2

4

2

A(0, 0, 4)

y

z

x

7. Answers may vary.
a) [x, y, z] = [2, 1, 3] + s[−1, 3, 4] + t[2, 0, −1] ;

x = 2 − s + 2t, y = 1 + 3s, z = 3 + 4s − t
b) [x, y, z] = [−2, 5, 1] + s[−5, 5, 5] + t[4, 5, 2] ;

x = −2 − 5s + 4t, y = 5 + 5s + 5t, z = 1 + 5s + 2t
c) [x, y, z] = [−3, 1, 1] + s[1, 1, −2] + t[1, 2, 3] ;

x = −3 + s + t, y = 1 + s + 2t, z = 1 − 2s + 3t

8. a) [4, −1, 2]
b) Answers may vary. A(−2, 0, 0), B(0, 0, −4)
c)

−⇀
AB = [2, 0, −4]

10. Answers may vary.
a) [x, y, z] = [1, 2, −3] + s[4, −1, 3] + t[2, 0, −3]
b) [x, y, z] = [−2, 6, 2] + s[4, −1, 1] + t[10, −10, 0]

11. Answers may vary.
a) x = 7 + 7t + 6s, y = −3 + t − 2s, z = 1 − 2t + s
b) x = −2 − 5t − 4s, y = 6 + 9t + s, z = 1 + 6s

12. a) 4x − 2y + z + 12 = 0 b) x − y + 4z + 7 = 0

13. a) 3x − y + 2z = 0 b) 3x − y + 2z − 7 = 0
c) 3x − y + 2z + 1 = 0

14. a) (3, 2, 0)
b) The plane is parallel to the z-axis.
c) The line in R2 lies on the plane in R3.

15. a) 2x − 4y + 3z − 1 = 0 b) 2x − y + z − 1 = 0
c) y − 5 = 0

17. Answers may vary.
a) [x, y, z] = [1, 0, 1] + s[2, −2, −1] + t[1, 1, 4] ;

[x, y, z] = [3, −2, 0] + s[1, 1, 4] + t[1, −3, −5]
b) x = 1 + 2s + t, y = −2s + t, z = 1 − s + 4t ;

x = 3 + s + t, y = −2 + s − 3t, z = 4s − 5t
c) 7x + 9y − 4z − 3 = 0

18. a) The angle of intersection between two planes is the acute
angle between their normal vectors.

b) i) 63˚ ii) 82˚

19. 2x + y − z − 9 = 0
20. a) x + y + z = 0 b) x + y + z + 4 = 0

c) x + y + z − 4 = 0 d) The planes are parallel.

22. 5x − 13y − 2z + 27 = 0

23. 4x − 3y + 4z + 11 = 0

24. 4x + 2z − 15 = 0
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19. 2
√

30
5

units

20. a) 6 units b) 1√
11

units c) |Ax1 + By1 + Cz1 + D|√
A2 + B2 + C2

units

3.5 Exercises, page 168
1. A line can intersect a plane, lie on a plane, or be parallel to

a plane.

5. Answers may vary.
a) x = t, y = 3 − t, z = 4 − t; x

1
= y − 3

−1
= z − 4

−1
b) x = 2, y = t, z = 1 − t; no symmetric equations

c) x = t, y = 4 + 2t, z = 2 − 3t; x
1

= y − 4
2

= z − 2
−3

6. Answers may vary. x − 7
1

= y + 2
−6

= z − 4
22

7. 3x + 9y − 4z + 8 = 0

8. Answers may vary. 
[x, y, z] = [2, 0, −1] + t[34, 26, −19]

9. Answers may vary. 3x + 3y + 2z − 1 = 0,
4x + 3y + 5z − 6 = 0, 5x + 3y + 8z − 11 = 0

10. 14x + 17y − 17z + 9 = 0

11. 3x + 2y + 5z − 12 = 0

12. 2x − y + 5z + 3 = 0

13. b) The second value of k is the reciprocal of the first.

14. a) 11x + 14y − 3z = 0 b) 12x + 13y − z + 5 = 0
c) 5x + 5y + 3 = 0 d) 4x + y + 3z + 9 = 0
e) 5x + 5z + 14 = 0 f) 10x + 5y + 5z + 17 = 0

15. a) The normal vectors are scalar multiples of one another.
b) A family of planes parallel to x + 2y − 3z + 4 = 0 and

2x + 4y − 6z + 5 = 0

16. 16x − 9y − 5z − 18 = 0; 3x − 2y + 1 = 0

17. 7x − 5y + z = 0; 5x − 4y + 2z − 3 = 0

18. Answers may vary. x = 2 + t, y = −2 − t, z = −2;
x = −2, y = 2 − t, z = −2 + t; x = 2 + t, y = −2, z = −2 − t

19. A2x + B2y + C2z + D2 = 0

b) x = −5
6

− 2t, y = −4
3

− 3t, z = t

15. a) The planes form a triangle. b) (12, −17, −11)

c) 2 planes are parallel. d)
(

5
4

, 13
14

, 23
28

)
e) x = 5 − 3t, y = 1, z = t

18. y = −x2 + 6x − 5

19. a = 17, b = −4

21. x = 7a + 5b − 3c
3

, y = −5a − 4b + 3c
3

, z = −2a − b + c

3.7 Exercises, page 188
1. a) x = 1, y = 2 b) x = 2, y = 2

c) x = 10, y = −25 d) x = −1, y = 2

2. a) x = 12
13

, y = −31
26

b) x = 17
43

, y = −92
43

c) x = −6, y = 5 d) x = 17
8

, y = 3
4

4. a) Matrix 3 b) Matrix 2 c) Matrix 1

5. a) x = 3, y = 4, z = 1 b) x = −1, y = 2, z = −5

c) x = 5, y = −2, z = 3 d) x = 1
4

, y = −1
4

, z = 0

6. a) x = 2, y = 3, z = 4
b) x = −6 + 7t, y = −4 + 4t, z = t
c) Impossible d) Impossible

7. a) x = −23 − 7t, y = 5 + 2t, z = t
b) x = 1 + 7t, y = 1 − 10t, z = t

c) x = −1
5

− t, y = 8
5

+ t, z = t

d) x = 7 + 7t, y = −12 − 12t, z = t

9. a) Matrix 1 b) Matrix 2 c) Matrix 3

3.8 Exercises, page 194
3. a) x = −1, y = −5

3
, z = 5

3
b) x = −32

31
, y = 51

31
, z = 119

31
4. a) x = 11 + 8t, y = −4 − 3t, z = t

b) x = −3
10

− 7
10

t, y = 11
10

− 11
10

t, z = t

7. a) x = 2 − 4t, y = 1 + 3t, z = t

b) x = −3
2

− 9
10

t, y = −7
2

− 3
10

t, z = t

8. $18.35; $32.15, $47.75

9. 125 kg of brand X, 250 kg of brand Y, 125 kg of brand Z

10. 7.7%; 45.73%; −25%
8. (2, 6, 0)

9. Answers may vary.
a) x = 6 + t, y = 2t, z = 0; x = 6 + 3t, y = 0, z = −2t; 

x = 6, y = 3t; z = t
b) x = 6 + t, y = 2t, z = 0; x = t, y = −12 + 2t, z = 0; 

x = t, y = 2t; z = 4

10. a) 6.3˚ b) 90˚

11. a)
(

4
6

, −5
6

, 17
6

)
b)

(
16
11

, −18
11

, 39
11

)
14. (−1, 3, −2)

15. 2x − y − 5z + 7 = 0, 2x − y − 5z + 5 = 0

16. Answers may vary. [x, y, z] = [0, 0, 8] + t[1, 1, −1];
[x, y, z] = [0, 0, −4] + t[1, 0, −3]

17. Answers may vary.

a) x − 3
2

= y + 5
3

= z + 1
1

c) x − 2z − 3 = 0, x − 2z − 5 = 0

3.6 Exercises, page 178
5. Answers may vary.

a) 2x + 3y + 4z + 9 = 0 b) 2x + 3y + 4z + 10 = 0
c) x + y + z = 0 d) x + 2y + z + 7 = 0

6. Three parallel planes

7.
(

2
5

, 24
5

, 2
)

8. a) (1, 2, 3) b) (4, −2, 3) c)
(

−1
4

, 4, 5
4

)
d) (1, 3, −2) e) (−1, 2, 3) f)

(
−13
10

, −11
10

, −14
5

)
10. x = 16

5
− 7t, y = 22

5
+ t, z = 5t

13. Answers may vary.
a) π3 = π1 + π2; x = −12 + t, y = 7 − 2t, z = t

b) π3 = 2π1 + π2; x = 6
7

, y = t + 40
7

, z = t

14. Answers may vary.
a) x = 11

5
+ t, y = −2

5
− t, z = t
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11. a) i) 79.9˚ ii) 125.9˚
b) The temperature never reaches 200˚C.

12. 18 000 Italian, 54 000 Oriental, 15 000 French

3.9 Exercises, page 198
3. a) x = 32.5, y = 34.7, z = −23.1

b) x = 1.5787, y = 2.5889, z = 1.2132

4. a) i) System A iii) x = −5
3

+ 1
3

t, y = t

5. b) i) x = −1.2414, y = 2.1379 ii) x = 5, y = 2

6. a) i) System A

iii) x = 1
7

− 17
7

t, y = 10
7

− 9
7

t, z = t

7. a) x = 5 − t, y = −5 + 2t, z = t
b) x = 4.75 − 0.25t, y = 1.75 − 0.25t, z = t

8. $10.34; $8.73, $12.50

9. a) i) 1 ii) 5 iii) 14

b) 1
3

; 1
2

; 1
6

b) [x, y, z] =
[
0, 11, 17

2

]
+ t[2, −6, −5]; x

2
= y − 11

−6
= z − 17

2
−5

19. Answers may vary. x = t, y = 5 − 3t, z = 4 − 2t

20. 9x + 4y + 4z = 0

21. Answers may vary.
b) 5x − y + 2z − 7 = 0
c) 3x − 2y + 7z − 10 = 0

22. a) y − z − 4 = 0 b) x + 8y − 7z − 25 = 0

23. b) (1, 2, −3)

25. a) x = 1, y = −2 b) x = −1, y = 2
c) x = 3, y = −1

2
, z = 2 d) x = −6, y = 3, z = −1

2

26. a) x = −1, y = 0, z = 2

b) x = 1
5

− 1
5

t, y = −7
5

+ 2
5

t, z = t

Chapter 3 Self-Test, page 208
1. 52.1˚

4. 13x + 11y + 25z + 65 = 0

10. 1.6922, −125.15, 4182.5

11. a) 1.1724, 9976.1

12. 0.0148; 0.22

Chapter 3 Review Exercises, page 204
1. A line parallel to the x-axis; a plane parallel to the xz-plane

2. A line parallel to the y-axis; a plane parallel to the yz-plane

3. (−2, 3, 1)

4. (4, −1, 3)

5. Answers may vary.
a) [x, y, z] = [1, 4, 2] + t[2, −1, 0]
b) (3, 3, 2), (5, 2, 2), (7, 1, 2)
c) x = 1 + 2t, y = 4 − t, z = 2
d) No symmetric equations

6. Parts a and b

7. Answers may vary.
a) [x, y, z] = [1, 2, 3] + t[−4, 5, 3]
b) x = −1 − 2t, y = 3 + 4t, z = 2 + 4t

c) x − 3
2

= y + 2
−1

= z + 1
1

8. a) 4x − y + 9z = 0 b) x − 17y + 3z − 1 = 0
c) 3x + y − z − 6 = 0

9. π1 and π3

10. 8x − y − 2z + 29 = 0

11. x + 6y + z − 16 = 0

12. a = 4
3

b + 5
3

13. a) 3x − y + 4z − 21 = 0
b) Answers may vary.

x = 1 + 6s + t, y = 2 − 2s + 23t, z = 5 − 5s + 5t

14. a) (−2, 1, 5); 27˚ b) x = 2 + 3t, y = −1 − 2t, z = −5 − t; 0˚

16.
(

35
9

, 4
9

, 10
9

)
17. b) 2x + y + 2z − 4 = 0, 2x + y + 2z + 8 = 0

18. Answers may vary.
a) [x, y, z] = [0, 0, 0] + t[4, −7, −2]; x

4
= y

−7
= z

−2

5. 3x + 10y − 8z + 9 = 0

6. a) (−2, 3, 8)
b) Answers may vary. x = 1 + 2t, y = −1 + 4t, z = 2 + t

7. Answers may vary. x = t, y = −1 − 2t, z = 2 + t

9. a) x = −8, y = 21
2

d) x = 0, y = 1, z = 2

10. 579

Performance Problems for Vectors
Problems, page 210

1. a) ii) 25, 28, 44

2. b) bc cos A + ca cos B + ab cos C = c2, where c is the
hypotenuse.

3. a) Answers may vary. For example, (1, 4.6, 6.6),
(2, 5.3, 7.3), (4, 6.7, 8.7)

4. b) y2 = y3 − x3√
2

, z2 = z3 − x3√
2

5. The direction vector of the line is a scalar multiple 

of 
[
1, 1√

2
, 1√

2

]
.

6. 22 square units

7. b)
∣∣−⇀a ∣∣ ∣∣−⇀b ∣∣ sin

(
cos−1

(
−⇀a •

−⇀
b∣∣−⇀a ∣∣ •
∣∣−⇀b ∣∣

))

8. a)
∣∣−⇀v × −⇀w ∣∣

b)
∣∣∣∣−⇀u ∣∣ cos θ

∣∣, where θ is the angle between
−⇀u and −⇀v × −⇀w

d) −⇀u • −⇀v × −⇀w is positive.

10. a) 48 b) 12

12. a) 6

13. 3
√

2

15. a) 5x − 3y + 5 = 0, 7y − 10z + 5 = 0, 7x − 6z + 10 = 0
b) The 3 planes intersect in the line.

17. a) Yes b) Yes
c) C lies on a circle.
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29. a)
14

,
14

30. x = (36 − 9
√

3 − 6π) cm2, y = (−36 + 18
√

3 + 3π) cm2 ,
z = (36 − 36

√
3 + 12π) cm2

Chapter 4  Examples of Proof
4.1 Exercises, page 224

1. Answers may vary. For example, 2

2. Answers may vary. For example, 7 = 22 + 12 + 12 + 12

3. Answers may vary.
a) 0 b) 1 c) An obtuse triangle
d) 0 e) 2

6. Answers may vary. For example, 41

7. a) 360˚, 540˚, 720˚, (n − 2)180˚
b) 360˚, 540˚, 720˚, (n − 2) 180˚

8. a) No

c) B(
√

m2 + n2, 0) C(m +
√

m2 + n2, n) d) C(0,
√

3a)

6. b) B(a, 0); D
(

1
2

a + b, c
)

c) Area of �DOB: 1
2

ac; area of �AOC: 2ac;

area of �DOB = 1
4

(area of �AOC)

9. b) A(a, b), B(−a, b) c) M(0, b)

14. A square or a rhombus

17. b) Length: width = 2:
√

3

4.4 Exercises, page 244
1. c) want to prove that 

−⇀
b = −⇀c d)

−⇀
DB = −⇀a +

−⇀
b

e)
−⇀
DB = −⇀a + −⇀c

5. A parallelogram
b) P moves along the line y = −x + 0.5.

c) P moves along the line y = −x + 1.

20. a) −⇀a b)
−⇀
0 c) −⇀a

4

2

−4

−2

y

x
0 2 4−2−4

A(1, 1)

y = −x + 1

P

4

2

−4

−2

y

x
0 2 4−2−4

A(1, 1)

P

y = −x + 0.5

y = −x sin A
sin C

= biggest side
medium side

> 1.

16. The statement is true.

17. b) No

4.2 Exercises, page 230
1. b) No. This only proves the Pythagorean Theorem for an

isosceles right triangle.

3. Gemma’s response is correct as long as a is the hypotenuse
of a right triangle.

4. a) ∠ ABC = ∠ CBD; ∠ BAC = ∠ BCD; ∠ BCA = ∠ BDC
b) c2 − cx = a2

c) ∠ ABC = ∠ ACD; ∠ ACB = ∠ ADC; ∠ BAC = ∠ CAD
d) cx = b2

5. a) Each angle in the central figure is supplementary to a
right angle and each side has length b − a.

7. 130.83 cm

8. a) ∠ EDB and ∠ BCA are right angles, so ED and AC are
parallel. Thus, ACDE is a trapezoid.

b) See the proof that ∠ ABD is a right angle on page 228.
21. Answers may vary. For example, [1, 2, 2] and [−8, −7, 11]

22. No

24. a) 12√
14

b)
√

219
3

c) 9√
10

26. (5, 2, 0) and (1, −1, −1)

27. b) 2x + 5y + z − 35 = 0

28. a) x + 2y + 2z − 6 = 0 or x − 2 = 0
b) 7x + 6y + 6z − 26 = 0 or x − 2 = 0

2 − 3
√

2 38 + 27
√

2

11. AM = AN
.= 7.21 cm

12. a) y =
√

4
5

x b) y =
( √

2√
2 + 1

)
x

4.3 Exercises, page 238
1. a) ii) b) ii) c) i) d) i) 

These choices are better because there are more zeros in the
coordinates, simplifying calculations.

2. a) A(−a, 0), B(a, 0), C(a, b) b) C(a + c, b)
19. a) P moves along the line y = −x.

4

2

−4

−2

y

x
0 2 4−2−4

A(1, 1)

P

11. i) 360˚ ii) 360˚ iii) 360˚

13. Answers may vary. For example, the sum of two even
integers is always an even integer.

14. Answers may vary. For example, the division of a square of
an odd number by 4 always has a remainder of 1.

15. 4
3

; 5
4

; answers may vary. For example, when the sides of a 

triangle are given by 3 consecutive integers,
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Chapter 4 Review Exercises, page 248
1. a) Answers may vary. For example, 12 = 5 + 7;

20 = 17 + 3; 100 = 71 + 29
b) You would have to find an even number that could not be

written as the sum of two prime numbers.

2. Answers may vary. For example, cos2 θ + sin2 θ = 1 for all θ

3. a) 360˚ b) 360˚

4. Answers may vary. For example, the product of two
consecutive natural numbers is always even.

5. Answers may vary. For example, the points all lie in a

5.4 Exercises, page 279
1. a) 30 b) 440 c) 40 d) 1

4
2. 6 candies per person per day

6. Middle square: Length = 1√
2

s; area = 1
2

s2

Smallest square: Length = 1
2

s; area = 1
4

s2

16. 7.75 cm2

5.5 Exercises, page 286

1. Problem 1: s
√

2
2 +

√
2

cm, problem 2: 17.16%,
straight line.

7. Length of the inside triangle:
√

3x; 
length of the outside triangle: 2

√
3x

Chapter 4 Self-Test, page 250
1. a) False. For example, rectangles with dimensions 1 × 6

units and 2 × 3 units have the same area.
b) True in 2 dimensions, false in 3 dimensions
c) False. A rhombus also has 4 equal sides.

4. 43.3%

Performance Problems for Proof
Problems, page 252

problem 3: 3.33 cm

3. a) 7.07 cm

4. a) 24 cm2

6.
√

112 cm

12. b) �PBQ is isosceles.
c) �PBQ is equilateral.

Chapter 5 Self-Test, page 290
4. a) False. For example, similar triangles have congruent

angles but can be of different sizes.
b) False. For example, a right triangle

6. Bina told the truth; Anna took the radio.
3. 2.4

4. h = ab
c

6. a) 3.82 cm, 6.18 cm b) 3.82 cm, 6.18 cm

7. 2

8. 6

23. b) The middle triangle

Performance Problems for Deductive Reasoning
Problems, page 292
16.

√
5

34. Approximately 2.0565

Chapter 6  Methods of Counting

26. −⇀c = −−⇀a + 2

−⇀a •
−⇀
b

−⇀
b •

−⇀
b

−⇀
b

Chapter 5  Deductive Reasoning
5.1 Exercises, page 263
4. a) Both angles are 60˚.

b) x˚ and 180˚ − 2x˚, or 180˚ − x˚
2

9. a) Triangle, vertex, octagon, parallel, perpendicular, radius,
degree

19. a) Yes

6.1 Exercises, page 306
1. a) 24 b) 24

2. 6 numbers: 123, 132, 213, 231, 312, 321

3. 120

4. 72

5. a) 576 b) 120 c) 144

6. 45

7. a) 32 b) 28

8. a) 75 b) 36
22. a) The card with the 8 on it, the card with the circle on it,
and the card with the square on it

c) He is a liar.

5.2 Exercises, page 269
2. Parts b, c, and e

5.3 Exercises, page 275
2. a) True b) False c) True

d) True e) True f) False
g) True h) True i) True

9. a) 10 000 b) 50 000 s or 13.9 h

10. a) 5040 b) 4960

11. a) 2 b) 32

12. 1024

13. a) 366 or 2.2 × 109

14. a) 250

15. 1014
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18. a) 208 860 b) 6840

19. a) 24 − 1 = 15

20. a) 10 b) 5 c) 2

6.2 Exercises, page 314
1. a) AB, AC, AD, BC, BD, BA, CA, CB, CD, DA, DB, DC, 12

b) 24

2. a) 6 b) 24 c) 120

3. a) 6; 12; 20 b) 6; 24; 60

4. 120

5. a) 5040 b) 840

6. 5040

7. a) i) 1 ii) 2, 2 iii) 3, 6, 6
iv) 4, 12, 24, 24 v) 5, 20, 60, 120, 120

8. a) 6 b) 4 × 3! = 4! c) 5 × 4! = 5!
d) 6 × 5! = 6! e) (n + 1) • n! = (n + 1)!

9. a) 6 b) 30 c) 120
d) i) n ii) n(n − 1) iii) n(n − 1)(n − 2)

10. a) (n + 2)(n + 1) b) 1
n(n − 1)(n − 2)

c) n(n + 1)

d) (n + 3)(n + 4) e) (n − r + 1)
f) (n − r + 1)(n − r)(n − r − 1)

11. a) 6 b) 24 c) 120
d) 362 880 e) 8.065 81 × 1067 f) 11
g) 56 h) 60 i) 30 240
j) 42 k) 120 l) 720

m) 60 480 n) 2184 o) 45
p) 2 598 960 q) 20

12. 116 280

13. a) 60 b) 120

14. 120

15. a) 6 497 400 b) 17 160

16. 725 760

9. a) 1 b) 5 c) 10 d) 10 e) 5 f) 1

10. 32

11. 360

12. a) 420 b) 10 c) 20

13. a) 70 b) 56

c) i) 184 756 ii) (2x)!
x!x!

iii) 125 970 iv) (x + y)!
x!y!

14. a) 200 b) 240

15. a) i) 6 ii) 30 iii) 90

b) i) 5.55 × 1012 ii) (3x)!
x!x!x!

iii) 3.78 × 1012 iv) (x + y + z)!
x!y!z!

6.4 Exercises, page 326
1. a) 120 b) 24

2. 24

3. 120

4. 48

5. a) 144 b) 288

7. 144

8. a) 120 b) 48 c) 72

9. 504

10. 9 395 200

11. 25

12. 120

13. 13

14. 150

15. a) 3360 b) 360 c) 60 d) 2520

16. a) 1260 b) 360 c) 900 d) 300

17. 35
20. a) r = 2, r ≥ 0, r ∈ N b) r = 3, r ≥ 0, r ∈ N
c) r = 4, r ≥ 0, r ∈ N d) r = 5 or r = 6, r ≥ 0, r ∈ N

21. n! > 2n, for n ≥ 4

6.3 Exercises, page 320
1. a) 30 b) 3360 c) 6 652 800 d) 37 800

2. a) 6

3. a) 30 240 b) 1680 c) 415 800 d) 3360

4. 1260

5. 560

6.5 Exercises, page 331
1. a) AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC

b) AB, AC, AD, BC, BD, CD

2. a) 10
b) ABC, ABD, ABE, CDE, BDE, ADE, ACD, ACE,

BCD, BCE

3. 3 268 760

4. 84

5. 30

6. a) 120 b) 720

7. a) 210 b) 210

8. a) i) 1 ii) 1, 1 iii) 1, 2, 1
iv) 1, 3, 3, 1 v) 1, 4, 6, 4, 1
17. Parts c, d, and e

19. a) n = 4, n ≥ 1, n ∈ N b) n = 9, n ≥ 2, n ∈ N
c) n = 5, n ≥ 1, n ∈ N d) n = 3 or 8, n ≥ 3, n ∈ N
e) n = 7, n ≥ 4, n ∈ N f) n = 5, n ≥ 2, n ∈ N

18. 120

19. a) 1656 b) 1632 c) 840
16. a) 24 b) 6 c) 12

17. a) 18 b) 18

7. 10

8. 3 527 160
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26. 41

27. a) 59 850 b) 43 092 000
c) 1 368 000 d) 547 200

28. 80 089 128

Chapter 6 Review Exercises, page 337
1. 24

2. a) 60 b) 36 c) 45

3. a) 7 200 000 b) 10 376 000

4. a) 10 000 b) 5040

5. a) 125 b) 30

6. 198 360

7. a) 720 b) 24

8. 336

9. 840

10. 657 720

11. 8640

12. 31

13. a) 1680 b) 360 c) 840 d) 90

14. a) n = 7, n ≥ 3, n ∈ N b) n = 6, n ≥ 4, n ∈ N
c) r = 2, 0 ≤ r ≤ 5, r ∈ N d) r = 3, 0 ≤ r ≤ 8, r ∈ N

15. a) (n + 3)(n + 2), n ≥ −1, n ∈ N

Mathematical Induction
7.1 Exercises, page 346

1. a) 1 b) 3 c) 10 d) 20 e) 84 f) 120

2. a) C(7, 2) b) C(9, 5) c) C(11, 4) d) C(20, 14)
e) C(5, 3) f) C(7, 6) g) C(12, 9) h) C(21, 7)

3. Row n has (n + 1) entries, so even numbered rows have an
odd number of entries and odd numbered rows have an even
number of entries.

6. a) 50
b) The second number in row n is C(n, 1) , or n.

13. a) Exit 1: 1 path; Exit 2: 2 paths; Exit 3: 1 path
b) Exit 1: 1 path; Exit 2: 3 paths; Exit 3: 3 paths; 

Exit 4: 1 path
c) Exit 1: 1 path; Exit 2: 4 paths; Exit 3: 6 paths; 

Exit 4: 4 paths; Exit 5: 1 path
d) Exit 1: 1 path; Exit 2: 5 paths; Exit 3: 10 paths; 

Exit 4: 10 paths; Exit 5: 5 paths; Exit 6: 1 path

15. a) 70 b) 210

16. a) i) 1; 1 ii) 1; 2; 1
iii) 1; 3; 3; 1 iv) 1; 4; 6; 4; 1

17. a) C(3, 3) + C(4, 3) + C(5, 3) + C(6, 3) = C(7, 4)

18. a) C(2, 0) + C(3, 1) + C(4, 2) + C(5, 3) + C(6, 4) = C(7, 4);
C(2, 2) + C(3, 2) + C(4, 2) + C(5, 2) + C(6, 2) = C(7, 3)
14. 201

15. a) 211 926 b) 241 098 c) 2 569 788

16. a) Super 7 lottery b) 62 891 499, 13 983 816
c) 48 907 683

17. a) 210 b) 140

18. 864

19. a) 5 b) 2 or 6 c) 7 d) 8 e) 4 or 2 f) 3 or 7

20. a) 56 b) 28 c) 20

21. a) 6160 b) 10 752

22. 47

23. 56

25. a) 9 b) 24 c) 45

28. a) 2 598 960 b) 24 c) 3744

29. a) 120 b) 36

30. 3360

Chapter 6 Self-Test, page 340
1. 6
2. a) 142 506 b) 4896 c) 151 200

3. a) 27 216 b) 90 000 c) 62 784

4. a) P(n, r) = C(n, r) • r!

5. a) 120 b) 12

6. 7200

Chapter 7  The Binomial Theorem and 
vi) 1, 5, 10, 10, 5, 1
c) i) 1, 6, 15, 20, 15, 6, 1

ii) 1, 7, 21, 35, 35, 21, 7, 1

10. a) 1 b) 10 c) 45 d) 55
e) 66 f) 120 g) 165 h) 220
i) 210 j) 330

11. a) C(n, 0) = n!
0!n!

, n ≥ 0, n ∈ N

b) C(n, 1) = n!
1!(n − 1)!

, n ≥ 1, n ∈ N

c) C(n, 2) = n!
2!(n − 2)!

, n ≥ 2, n ∈ N

d) C(n, 3) = n!
3!(n − 3)!

, n ≥ 3, n ∈ N

e) C(n, 4) = n!
4!(n − 4)!

, n ≥ 4, n ∈ N

12. 700

13. a) 4368 b) 376 992 c) 1287 d) 65 780

b) 1
(n + 1)(n)

, n ≥ 1, n ∈ N

c) (n − r + 3)(n − r + 2)(n − r + 1), n ≥ r, n ∈ n, r ∈ W

16. 7560

17. 180 180

18. 15 120

19. 10

20. a) 120 b) 40 c) 60, 60

21. 2 238 976 116

22. a) 12 b) 36

23. 1728

24. 576

26. 120

27. a) 18 564 b) 3150 c) 8106
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21. a) Each sum is a power of 2.

b) The sum represents the number of ways any number of
items can be chosen from a set of 5 items. 

7.2 Exercises, page 354
1. a) a3 + 6a2 + 12a + 8

b) y4 − 20y3 + 150y2 − 500y + 625
c) 1024t5 + 1280t4 + 640t3 + 160t2 + 20t + 1
d) x3 − 3x2y + 3xy2 − y3

e) 16a4 + 32a3b + 24a2b2 + 8ab3 + b4

f) x5 − 35x4 + 490x3 − 3430x2 + 12 005x − 16 807

2. a) An a is selected from 5 of the 8 binomial factors and b is
selected from the 3 remaining factors.

b) 56

3. a) 7 b) 35 c) The 5th term

4. In each case, one letter is chosen from 4 of the 6 binomial
factors and the other letter is chosen from the 
2 remaining factors.

5. a) 10 terms; 11 terms b) (a + b)10; (a + b)9

c) (a + b)n has one middle term when n is even and two
middle terms when n is odd.

8. a) x6 + 12x5 + 60x4 + 160x3 + 240x2 + 192x + 64
b) x4 − 12x3 + 54x2 − 108x + 81
c) 1 + 6x2 + 15x4 + 20x6 + 15x8 + 6x10 + x12

d) 32 − 80x + 80x2 − 40x3 + 10x4 − x5

c) 1 + 3 + 9 + 27 + 81 d) 7 + 5 + 3 + 1 − 1
e) −1 + 1 − 1 + 1 − 1 f) 6 + 12 + 24 + 49 + 96

2. a)
100∑
i = 1

i b)
7∑

k = 1

4 c)
5∑

k = 2

j3

d)
4∑

k = 2

1
k

e)
12∑

k = 3

kk f)
12∑

j = 1

aj

3. a) iv) b) ii) c) iii) d) vi)

4. a)
7∑

i = 1

2i b)
6∑

j = 1

(3j − 1) c)
5∑

k = 1

(19 − 4n)

d)
5∑

k = 1

4(5)(k − 1) e)
4∑

j = 1

(−1)( j − 1) f)
5∑

i = 1

3(−2)k − 1

5. a) 5 + 6 + 7 + 8 + 9 + 10 b) −2 + 4 − 8 + 16 − 32
c) 5 + 10 + 20 + 40 + 80 + 160

6. a) a + a2 + a3 + a4 b) a + 2a2 + 3a3 + 4a4

c) a + 4a + 27a + 256a d) −a + 4a2 − 27a3 + 256a4

7. a)
16∑

i = 1

(6i − 3) b)
11∑

j = 1

(23 − 5j) c)
13∑

k = 1

(4k − 6)

d)
9∑

m = 1

( 1
2

)m − 1
e)

9∑
m = 1

3
(
2m − 1) f)

7∑
k = 1

2(−3)k − 1

8. a) 4 + 6 + 8 + 10 + 12 + 14

b) (x − 1)
1

+ (x − 1)2

2
+ (x − 1)3

3
+ (x − 1)4

4
+ (x − 1)5

5
6 7
19. a) 15 b) 9

20. a) 170 b) n2 − 3n
2

e) a4 − 8a3b + 24a2b2 − 32ab3 + 16b4

f) 8a3 + 36a2b + 54ab2 + 27b3

g) x5 + 5x3 + 10x + 10
x

+ 5
x3 + 1

x5

h) 243a5 + 810a4b2 + 1080a3b4 + 720a2b6 + 240ab8 + 32b10

9. a) 1 + 10x
(

1
2

)
+ 45x + 120x

(
3
2

)
+ . . .

b) x12 + 24x11 + 264x10 + 1760x9 + . . .
c) 256 − 1024x + 1792x2 − 1792x3 + . . .
d) 1 − 18x + 144x2 − 672x3 + . . .

7.3 Exercises, page 360
1. a) 4 + 5 + 6 + 7 + 8 b) 1 + 1

2
+ 1

3
+ 1

4
+ 1

5

+ (x − 1)
6

+ (x − 1)
7

c) 1 + 5 + 10 + 10 + 5 + 1
d) 3 + 10 + 35 + 126 + 462
e) −8 − 32 − 128 − 512 − 2048
f) 1

3
+ 1

15
+ 1

35
+ 1

63
+ 1

99

9. a)
99∑

k = 1

k(k + 1) b)
25∑

m = 1

(2m − 1)2 c)
10∑

k = 1

1
k(k + 2)

4∑
4 − i i

15∑
k − 1

8∑
j

10. a12 + 24a11b + 264a10b2; 59 136a6b6

11. a) −15 360x3 b) 7000x5y3 c) −112 640a9

d) 2288a9 e) 70x8

12. 7
4

13. a) −1512; 20 412 b) 1760; 59 136 c) 0; −120

14. a) 15 b) 15 c) No

15. a) 2x4 + 12x2y2 + 2y4

b) 8x3y + 8xy3

16. a3 + 3a2b + 3ab2 + 3a2c + 3ac2 + 6abc + b3 + 3b2c
+ 3bc2 + c3

18. a) 1 − 6x + 12x2 − 8x3; 1 + 5
x

+ 10
x2 + 10

x3 + 5
x4 + 1

x5

b) i) 11 ii) −26

19. 137

20. 3420

21. 1 + 7x + 21x2 or 1 + 14x + 91x2

22. a = b = 2

d)
i = 0

C(4, i)a b e)
k = 1

(2k − 1)(−1) f)
j = 1

j • 2

g)
7∑

m = 1

[
2(m − 1)]m

h)
n∑

k = 1

[a + (k − 1)d] i)
n∑

j = 1

ar j − 1

11. a) C(4, 0), C(4, 1), C(4, 2), C(4, 3), C(4, 4); 
4∑

i = 0

C(4, i)

b) C(1, 1), C(2, 1), C(3, 1), C(4, 1), C(5, 1), C(6, 1),

C(7, 1), C(8, 1); 
8∑

j = 1

C( j, 1)

c) C(2, 0), C(3, 1), C(4, 2), C(5, 3), C(6, 4); 
6∑

k = 2

C(k, k − 2)

d) C(3, 3), C(4, 3), C(5, 3)…c(n + 2, 3); 
n + 2∑
k = 3

C(k, 3)

12. a) The sum of the numbers in row n is 
n∑

i = 0

C(n, i) .

b)
8∑

i = 0

(
i∑

j = 0

C(i, j)

)
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13.
19∑

n = 1

(
n∑

j = 1

(
j + n2 − n

2

))2

7.4 Exercises, page 368
1. a) k + 1

k + 2
b) k + 1

2k + 3
c) k + 2

k
d) 2k + 1

3k + 2

e) 1
3

(k + 1)(k + 2)(k + 3)

f) 1
2

(k + 1)(2k + 1)(2k + 3)

7. a) C(1, 1) + C(2, 1) + C(3, 1) + C(4, 1) = C(5, 2)

b) C(1, 1) + C(2, 1) + C(3, 1) + ... + C(n, 1) = C(n + 1, 2)

9. a) C(2, 2) + C(3, 2) + ... + C(n + 1, 2) = C(n + 2, 3)

10. b) 2n2(n + 1)2

c) (n + 1)2(2n2 + 4n + 1)

13. a) Sn = n
3n + 1

b) Sn = n
4n + 1

14. a) Pn = n + 1 b) Pn = 1
n + 1

16. Sn = (n + 1)! − 1

19. Sn = (n + 1)! − 1
(n + 1)!

Chapter 7 Review Exercises, pages 376
1. a) C(7, 4) b) C(10, 6) c) C(n, n − r) d) C(n, r) 

2. a) 32 b) 70 c) 35

3. a) 1; 3; 6; 10; 15
b) These numbers are found on the 2nd diagonal of 

Pascal’s triangle.
c) For n points, there are n(n − 1)

2
line segments.

4. a) a5 + 5a4b + 10a3b2 + 10a2b3 + 5ab4 + b5

b) 56

5. a) x5 + 10x4 + 40x3 + 80x2 + 80x + 32
4 3 2

4.
10∑

k = 1

k + 1√
k

5. 1
2

+ 3
4

+ 5
8

+ 7
16

+ 9
32

6. 8x9 − 60x6 + 150x3 − 125

7. 45

8. 2240x3; 8960x4

9. Pn = (n + 1)2

Performance Problems for Discrete Mathematics
Problems, page 380
2. 165

3. 126

4. 286

5. 0.696

6. 0.785

7. a) 0.002 64 b) 0.304

8. 16
231

10. (un)2 − (un − 1)2 = un − 2 × un + 1

11. un + 2 − 1

12. (un)2 = un − 1 un + 1 + (−1)n + 1

14. Sn = un

15. a) 1
56

b) 15
28

16. a) 1
924

b) 5
231

17. 455

18. 286

19. 1 387 386
b) 16x − 96x + 216x − 216x + 81
c) x6 − 12x4 + 48x2 − 64

6. a) 128 − 448x + 672x2 b) 10 206x4

c) 210 d) 10x; 10x
(

3
2

)
7. 144

8. 35

9. a) 3 + 6 + 11 + 18 + 27 b) 9 + 16 + 25 + 36 + 49
c) −8 − 32 − 128 − 512

d) 1
24

+ 1
35

+ . . . + 1
n(n − 2)

+ 1
(n + 1)(n − 1)

10. a)
8∑

t = 1

(3t + 4) b)
7∑

k = 1

22 − k c)
10∑

j = 1

j • j!

15∑ 10∑ 1

20. a) 34 650 b) 5775

21. a) 6
1001

b) 120
1001

22. a) 0.25 b) 0.439 c) 0.214 d) 1.64 × 10−4

e) 0.999 f) 0.5 g) 0.105

23. 0.127

24. a) 0.0374 b) 6.93 × 10−4

25. 0.218

26. un = 11un − 5 + un − 10

27. a) 1, 1, 3, 5, 11, 21, 43, ...
b) tn2 = (tn + 1)(tn − 1) + (−2)n − 1

c) 3tn = 2n − (−1)n
d)
i = 1

i(i + 1) e)
m = 1

(3m + 1)(3m + 4)

13. a) Sn = n
n + 1

b) 51
5050

Chapter 7 Self-Test, page 378
1. a) 1, 9, 36, 84, 126, 126, 84, 36, 9, 1

b) a8 + 8a7b + 28a6b2 + 56a5b3 + 70a4b4 + 56a3b5

+ 28a2b6 + 8ab7 + b8

c) C(11, 5)

3. 40

30. a) If n is odd, Sn = (un + 1)2; if n is even, Sn = (un + 1)2 − 1.

b) Sn = 1 − 1
un − 1 × un

31. The sum of the nth row is u2n + 1.

Cumulative Performance Problems
Problems, page 389
4. b) PQ2 = PA × PB

c) PQ = PR, PR2 = PA × PB
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6. a) 11 b) 2, 4, 6

7. 10

10. c) No

18. a) 90˚ or 41.4˚

21. ∠ BAC = cos−1(d)

23. a)
(

7
2

, −5
2

, 1
)

b) 7√
2

27. a) n! b) 2n(n!) c) (2n)!
2n(n!)

28. n even: C
(

n, n
2

)
; n odd: C

(
n, n − 1

2

)
31. The constant equals two times the area of the triangle

divided by the length of one side of the triangle.

32. BE = 1.26, CA = 1.59

33. 5.66, 6.07

34. 1001

35. b) 49

180

90

y

x
0 1−1

37. a) 26
b)

(
26, 4.96 × 1014

)
; the y-coordinate represents the number

of different hands when dealt 26 cards from 52.
d) y = C(52, x); 0 ≤ x ≤ 52

38. b) y =
(

5
6

)n
, y = 1 −

(
5
6

)n
c) 26

39. b) y = C(13, n) × C(39, 13 − n)
C(15, 13)

c) i) 0.286 ii) 0.001 17 iii) 1.57 × 10−12

40. a) 1 048 576 b) 286 c) 43 243 200

43. f (x) = 1
x

, x > 0

44. 8
15

47. 30˚

53. a) 42
b) Pn = Pn − 1P1 + Pn − 2P2 + . . . + P2Pn − 2 + P1Pn − 1

54. a) 0.0693 b) 0.433

2

4

x
0 2 4

f (x)

f (x) = 1
x
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Index

2-space (R2), 74
equation of a line, 124–131,

202

3-space (R3), 74–80, 117
dot product, 91–95, 118
equation of a line, 135–140,

202
operations on Cartesian

vectors, 84–88, 117
parametric equations of a

plane, 147, 148, 151, 202
plotting points and lines, 210 
vector equation of a plane,

146, 147, 151, 202

Acceleration, 4

Adding vectors, 11–15, 35, 67,
84

Addition Principle of Cartesian
vectors, 34, 84, 322, 336

Agnesi, Maria, 267

Alternate-Angles Theorem, 273
corollary of, 275

Altitude to the hypotenuse, 252,

Associative law of
multiplication, 64, 116 

Axioms, 260, 261

Bearings, 5

Binomial coefficients, 351

Binomial expansion, 351

Binomial theorem, 350–354,
360, 375
proof using mathematical

induction, 372, 373

Cartesian vectors, 34–39, 67
alternative representation, 39
cross product, 102–106, 118,

119
dot product, 53, 54, 59–61
in 3-D space, 74–80, 117
operations in 3-space, 84–88,

117

Centroid, 392 

Chang, Sun-Yung Alice, 294

Commutative law of vector
addition, 12

Components
of a vector, 34
of cross product vectors, 102

Conclusion, 272

Concurrent lines, 276, 281

Concyclic points, 283

Congruent triangles, 261, 273,
278

Conjecture, 221, 247

Consistent system, 86, 175, 203

Constant term, 356 

Converse, 272, 288

Coordinate planes, 75

Coordinate proofs, 235–238,
247

Coplanar vectors
test for, 86–88, 112, 119

Corollary, 275

Corresponding-Angles
Theorem, 275

Cosine law, 45, 46, 53

C

B

A

253 

Analytical Engine, 303 

Angle,
between vectors, 54
calculate using dot product,

91, 92

Angle Sum Theorem, 221, 260,
267
proof using parallel lines, 223
proof using rotations, 222 
instructing with a graphing

calculator, 391, 392 

Angles in a Circle Theorem,
283

Areas of curved regions, 252 

ASA congruence axiom, 261

Associative law of addition, 17 

Chu, Shih-Chieh, 342

Circle
Angles in a Circle Theorem,

283
major and minor arcs, 283
point of tangency, 267 
sweeping with lines, 390 
Tangent-Radius Theorem, 268

Circular permutations, 325

Circumcentre
of a triangle, 276 

Collinear vectors, 25, 67
test for, 84, 85, 88, 118

Combinations, 328–332

Combinatorial proof, 343–345

Combined statement, 272

Commutative law of
multiplication, 59

Counterexample, 221, 247

Counting methods, 336

Cross product, 99–106, 118
of normal vectors of two

planes, 164
properties of, 111–114

Cyclic quadrilateral, 292 

Cyclic symmetry, 212

Deductive proof, 260–262, 288

Deductive reasoning, 260

Diagonal pattern
in Pascal’s triangle, 345

Directed line segment, 5

Direction, 4
of cross product of vectors, 99

D
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Direction angle, 43, 77, 78

Direction cosines, 78

Direction sines, 83 

Direction vector
of a line, 124

Dirichlet’s theorem, 297 

Displacement, 4

Distance, 4

Distributive law, 60

Distributive properties of scalar
multiplication, 25, 36

Dividers, 380 

Dodgson, Charles, 121

Dot product, 52–55, 68, 210 
and vector proof, 256 
in 3-space, 91–95, 118
properties of, 59–64

Double factorial symbol, 394 

du Châtelet, Emilie, 256

Elementary row operations, 185

Equal Tangent Theorem, 293 

Equal vectors, 6, 7, 67

Equation of a line
in 2-space, 124–131, 202
in 3-space, 135–140, 202

Equation of planes, 146–151,
202
linear combinations of,

165–168, 202

Equilibrant, 47

Equilibrium, 47

Euclid, 236, 260, 295, 296 

Expanded form of a series, 357

Exterior Angle Theorem, 225

Factorial notation, 310, 314,
336

Featured Mathematicians
Ada Lovelace, 303
Bertrand Russell, 269
Bhama Srinivasan, 311

Cathleen S. Morawitz, 10
Charles Dodgson, 121
Emilie du Châtelet, 256
Emmy Noether, 228
Euclid, 236
Florence Nightingale, 343
G.H. Hardy, 385
Hypatia of Alexandria, 33
John von Neumann, 147
Karl Friedrich Gauss, 278
Katherine Okikiolu, 184
Kurt Gödel, 277
Maria Agnesi, 267
Mary Somerville, 216
Sofia Kovalevskaya, 83
Sophie Germain, 357
Srinivasa Ramanujan, 383
Sun-Yung Alice Chang, 294

Fibonacci numbers, 382

Force, 5, 46–49

Fundamental Counting
Principle, 302–306, 336

Gauss, Karl Friedrich, 278

General term
of a binomial expansion, 353,

354

Geometric vectors, 4–7, 67
solving force problems, 46, 48
solving velocity problems, 44,

45

Germain, Sophie, 357

Gödel, Kurt, 277

Goldbach’s conjecture, 248 

Golden ratio, 295

Hardy, G.H., 385

Head of a vector, 5

Heading, 44

Hippocrates, 252 

Hypatia of Alexandria, 33

Hypotenuse
altitude to, 252

Hypothesis, 272

iff, 272

Incentre, 276 

Incircle, 276 

Inconsistent system of
equations, 86, 172, 173, 203

Index of summation, 357

Indirect counting, 324

Indirect proof, 267–269, 288

Induction, 367

Inductive reasoning, 220, 221,
367

Intersecting lines, 139
with a plane, 156

Irrational numbers, 268, 269

Isosceles Triangle Theorem,
261,
proof, 278

Kovalevskaya, Sofia, 83

Linear combinations
in vector proofs, 388, 389 
of Cartesian vectors, 39
of equations of planes,

165–168, 202
of vectors, 27, 67

Linear dependence, 88

Linear independence, 88

Linear systems
solving using graphing

calculators, 191–194
solving using matrices,

182–188, 204
solving with spreadsheets,

197, 198

Lines, 264
intersection with planes,

156–159
of intersection of two planes,

163
plotting in R3, 210 

Lovelace, Ada, 303

Lunes, 252 

L

K

I

H

G

F

E
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Magnitude,
of a cartesian vector, 37
of a vector, 4, 5
of cross product of vectors, 99,

102

Major arc, 283

Mass, 5

Mathematical induction,
363–367
applications of, 371–374

Matrices
solving linear systems

182–188, 204

Matrix, 182

Matrix operations on a TI-83
graphing calculator, 191, 192

Microsoft® Excel, 197, 198

Minor arc, 283

Morawitz, Cathleen S., 10

Multiple solutions
generating, 278

Multiplication principle, see
Fundamental counting
principle

Multiplying a vector by a scalar,
24–29

Mutually exclusive actions, 322

n!, 314, 336

n!!, 394 

Natural number, 269, 314, 336,
364

Newtons, 5

Nightingale, Florence, 343

Nine-point circle, 294 

Noether, Emmy, 228

Normal vector
of a plane, 149
of intersecting planes, 172,

173
of planes intersecting at a

point, 174, 175, 204

of planes intersecting in a line,
173

of three parallel planes, 171
of two parallel planes, 172
of two planes, 164, 165

Numerical proof
of the recursive pattern of

Pascal’s triangle, 344
of the symmetrical pattern of

Pascal’s triangle, 343

Numerically equal units, 100

Octagon,
construction, 391

Octants, 75

Okikiolu, Katherine, 184

Operations
on Cartesian vectors, 34, 35,

67

Opposite vectors, 7, 67

Orientation
of cross product of vectors,

103

Orthocentre, 281 

Parallel lines, 139

Parallel planes
equations of three, 171, 203
equations of two, 172

Parallelepiped, 212, 213 

Parallelogram, 264, 391
area of in 2-space, 211, 212 
grid, 26, 38
use to demonstrate the

Pythagorean theorem, 227,
228 

Parallelogram law 
of vector addition, 14, 34, 67

Parameter, 127

Parametric equations,
of a line in 2-space, 127–129,

202
of a line in 3-space, 135, 136,

138, 202

of intersecting lines of three
planes, 187, 188

of the plane in 3-space, 147,
148, 202

Pascal, Blaise, 342

Pascal’s formula, 345, 373, 375

Pascal’s triangle, 342–346, 375
binomial coefficients, 351
triangular numbers, 369 

Permutations
with different objects,

310–314, 332
with identical objects,

317–319, 332
with restrictions, 322–325,

332

Perpendicular distance, 213,
214

Perpendicular vectors, 53, 67,
99, 101, 102, 118

Perpendicularogram, 391 

Planes,
equation of, 146–151
from symmetric equations,

214 
intersecting in pairs, 172, 203
intersection of three, 175–178,

203
intersection with line, 156–159
problems involving three,

171–178, 203
problems involving two,

163–168

Playfair’s axiom, 274

Point of tangency, 267

Polya, George, 283, 367

Polygon, 264

PolySmlt application, 192–194

Position vector, 34

Prime numbers, 296, 297 

Principle of mathematical 
applications of, 371–374
induction, 364, 365, 375

Probability, 381

P

O

N

M
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Projection of a vector, 62–64,
67

Proof
of conjectures and theorems,

220–224, 247
of the Pythagorean theorem,

227–230
using coordinates, 235–238,

247
using vectors and addition law,

242–244, 248

Pythagoras, 268

Pythagorean diagram, 254, 255 

Pythagorean theorem, 227, 260
converse of, 273
proof of, 227–230

Quadrilateral, 264 

Ramanujan, Srinivasa, 383

Rational numbers, 268, 269

Rectangle, 264 

Recursive pattern of Pascal’s
triangle, 344

Reduced echelon form
of a matrix, 185

Reduced matrix, 185

Resolving a vector, 43

Resultant, 14

Right-hand rule
defining direction of cross

products, 99–103

Row operations
of matrices, 185–188

Row reduction, 185–188, 204

Russell, Bertrand, 269

SAS congruence axiom, 261

Scalar equation 
of a plane, 148–151, 202

Scalar multiplication
of Cartesian vectors, 35, 67

of vectors, 24–29

Scalar triple product, 112, 212,
213 

Scalars, 4, 67
multiplying vectors, 24–29

Semicircle theorem
coordinate proof of, 237, 238
deductive proof of, 262

Side-Splitting Theorem, 235,
260
coordinate proof of, 235, 236
proof using vectors, 242, 243

Sigma notation, 357–360, 375

Similar right triangles
used to prove the Pythagorean

theorem, 229, 230

Sine law, 45, 46, 48, 110

Skew lines, 139, 140, 157, 158

Slope y-intercept form
of an equation of a line, 124

Slope-point form
of an equation of a line, 124

Somerville, Mary, 216

Spreadsheets, 197, 198

Srinivasan, Bhama, 311

SSS congruence axiom, 261

Statements
and converses of, 272–275

Subtraction,
of Cartesian vectors, 34, 35
of vectors, 19–21, 67

Symmetric equation 
of a line in 2-space, 128, 129,

131, 202

Symmetric equations
of a line in 3-space, 136–140
planes from, 214 

Symmetrical pattern of Pascal’s
triangle, 343

Symmetry, 278

Tail
of vector, 5, 37

Tangent segments, 293 

Tangent-Chord Theorem, 293 

Tangent-Radius Theorem, 268 

TI-83 Plus calculator
evaluate combinations, 329
solve linear systems, 191–194

Torque, 109 

Translating figures, 6

Tree diagram, 302

Triangle 
circumcentre, 276
in centre, 276 

Triangle law
of cartesian vector addition, 34
of vector addition, 11, 14, 67
of vector subtraction, 19

Triangular numbers, 369 

Unique solutions, 203, 204

Unit vector, 39, 89

Vector components, 34

Vector equation
of a line in 2-space, 125, 126,

202
of a line in 3-space, 135, 138,

202
of the plane in 3-space, 146,

147, 151, 202

Vector proofs
using dot product, 256 
using linear combinations,

388, 389 
using the addition law,

242–244, 248

Vectors, 4–7, 67
adding, 11–15
angle between, 54, 55
Cartesian, 34–39
collinear, 25, 67
coplanar, 112, 113, 119
cross products of, 99–106,

118, 119 
equal, 67

V

U

T

S

R

Q

436 INDEX



linear combinations of, 27–29
linear dependence, 88
linear independence, 88
multiplying by a scalar, 24–29,

34
opposite, 67
perpendicular, 53, 102, 118
projections, 62–64
resolving, 43
subtracting, 19–21, 35

Velocity, 4
modelling, 43–49

von Neumann, John, 147

Weight, 5

Work, 58

Zero vector, 13, 20

Z

W
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