MFM 1PI

Slopes And Equations Of Lines Review Note

Slopes Of Line Segments

SLOPE is a measure of 5telp ness Ex.

Ex. State 2 formulas for SLOPE.

a) slope =
$$\frac{r15e}{run}$$

b) slope =
$$\frac{\Delta J}{\Delta \varkappa}$$

Ex. State the slope of the following:

a)

Slope =
$$\frac{rol}{chn}$$

Slope =
$$\frac{rist}{run}$$

: $\frac{3}{5}$

Slope =
$$\frac{130}{4}$$

= $\frac{2}{12}$

Slopes are given below. Match the slope with the line segment in the space below the line segment. Ex.

slopes:

Undefined

match:

Determine the slope between the given co-ordinates. State the formula. Ex. Show your work. Answers in lowest terms.

310 pe =
$$\frac{\Delta y}{\Delta x}$$

= $\frac{(6) - (1)}{(7) - (3)}$
= $\frac{5}{4}$

510pc:
$$\frac{\Delta 1}{\Delta 2}$$
= $\frac{(3)-(6)}{(2)-(-10)}$
= $\frac{-3}{12}$
= $\frac{-1}{4}$

c)
$$E(5, -4,), F(-2, -8)$$

$$510pe = Ay$$

$$= (-4) - (-8)$$

$$= (-6) - (-2)$$

$$= 4$$

2 Graphing Lines Using Slope and y-intercept

i) State the slope and y-intercept for each line. Ex.

ii) Graph two lines per grid below using the slope and y-intercept.

a)
$$y = \frac{2}{3}x - 5$$

b)
$$y = -3x + 4$$

c)
$$y = x + 2$$
 d) $y = -3$

d)
$$y = -3$$

slope =
$$\frac{2}{3}$$

slope =
$$\frac{3}{1}$$

$$y$$
-int = \mathbb{Z}

$$y-int = 2$$
 $y-int = -3$

Writing the Equation Of A Line Given the Graph

Write the equation of each line by stating the slope and y-intercept of the graph. Ex.

a)

$$slope = \frac{2}{7}$$

$$y-int = -1$$

equation:
$$y = \frac{3}{2}x - 1$$

b)

slope =
$$\frac{-2}{2}$$

c)

slope =
$$\frac{-2}{1}$$
 - -2

Applications Of Slope

A water heater supply company claims that it's water tank will take 4 hours to heat cold water to the Ex. required hot water temperature. The temperature increases by 15°C / hour and starts at 20°C.

a) Complete the table of values.

X	y
Number	Temperature
of Hours	(°C)
0	20
1	35
2	50
3	65
4	80

b) Graph the ordered pairs.

c) Determine the slope of the line.

 $=\frac{(20)-(35)}{(0)-(1)}$

d) State the units of the rise:

15°c/how State slope with units:

e) State the units of the y-intercept:

f) Does the line pass through the origin? ____ \(\cdot \)

ne (hours)

g) This is called Our + ial variation.

Ex. Linda burns 65 kiloJoules / minute when dancing. Write an equation to represent E, the energy burned in kiloJoules for T, the time in minutes.

65 Ki/minute Slope with units:

y-intercept with units____OKI

Equation: E=

This is called

variation.

Ex. The amount of gas remaining in the tank of a large truck can be calculated using the following formula: V = 250 - 0.12d where V is the volume of gas in litres left in the tank and d is the distance driven in kilometres.

State units of V:

State units of d:

State the slope with units:

d) What does the slope mean in words:

decrease of 0.12 L for each km

e) State the y-intercept with units:

250 Litres

- starting & of litres in the tank f) What does the y-intercept mean in words:
- g) Sketch a graph using slope and y-intercept. (label the axes and y-intercept)

i) What volume of gas remains after travelling 850 kilometres?

= 250 - 102 : the remaining = 148 volume of 900 is

h) What type of variation is this?

partial

5 Story Graphs

260

The following is a graph of John's taking a trip to the park. Ex.

Write story describing John's trip to the park.

John left home walking slow. After 4 minutes he stopped for 2 minutes. He walked a bit faster for 2 minutes. Then he stayed at the park for 3 minutes and then hurried home.