1 Slopes Of Line Segments
Ex. SLOPE is a measure of steepness
Ex. State 2 formulas for SLOPE.
a) slope $=\frac{\text { rise }}{\text { rum }}$
b) slope $=\frac{\Delta y}{\Delta x}$

Ex. State the slope of the following:
a)

$$
\begin{aligned}
\text { Slope } & =\frac{r \sec }{r \ln } \\
& =\frac{3}{4}
\end{aligned}
$$

$$
\begin{aligned}
\text { Slope } & =\frac{15 c}{r 4 n} \\
& =\frac{5}{12}
\end{aligned}
$$

Ex. Slopes are given below. Match the slope with the line segment in the space below the line segment.
slopes:
$\frac{-1}{3}$
Undefined
$\frac{1}{3}$
0
-4

$$
l^{-4}
$$

0
4

$$
\frac{1}{3}
$$

match:

Ex. Determine the slope between the given co-ordinates. State the formula.
Show your work. Answers in lowest terms.
a) $\mathrm{A}(7,6), \mathrm{B}(3,1)$
b) $\mathrm{C}(2,3), \mathrm{D}(-10,6)$
c) $\mathrm{E}(5,-4),, \mathrm{F}(-2,-8)$

$$
\begin{aligned}
\text { Slope } & =\frac{\Delta y}{\Delta x} \\
& =\frac{(6)-(1)}{(7)-(3)} \\
& =\frac{5}{4}
\end{aligned}
$$

$$
\begin{aligned}
\text { Slope } & =\frac{\Delta y}{\Delta x} \\
& =\frac{(-4)-(-8)}{(5)-(-2)} \\
& =\frac{4}{7}
\end{aligned}
$$

2 Graphing Lines Using Slope and y-intercept
Ex. i) State the slope and y-intercept for each line.
ii) Graph two lines per grid below using the slope and y-intercept.
a) $y=\frac{2}{3} x-5$
b) $y=-3 x+4$
c) $y=x+2$
d) $y=-3$

$$
\begin{array}{ll}
\text { slope }=\frac{\frac{2}{3}}{y} & \text { slope }=\frac{-3}{1} \\
y-\text { int }=-5 & y-\text { int }=4
\end{array}
$$

$$
\begin{array}{ll}
\text { slope }=1 & \text { slope }=\frac{0}{1} \\
\text { y-int }=Z & \text { y-int }=-3
\end{array}
$$

3 Writing the Equation Of A Line Given the Graph

Ex. Write the equation of each line by stating the slope and y-intercept of the graph.
a)

$$
\begin{aligned}
& \text { slope }=\frac{3}{7} \\
& \text { y-int }=\frac{-1}{\text { equation }: y=\frac{3}{2} x-1}
\end{aligned}
$$

b)

slope $=\frac{-2}{2}=-1$
y -int $=$ \qquad
$y=-x+2$

y -int $=\quad 0$
$y=-2 x$

4 Applications Of Slope

Ex. A water heater supply company claims that it's water tank will take 4 hours to heat cold water to the required hot water temperature. The temperature increases by $15^{\circ} \mathrm{C} /$ hour and starts at $20^{\circ} \mathrm{C}$.
a) Complete the table of values.
b) Graph the ordered pairs.
c) Determine the slope of the line.

x	y
Number of Hours Temperature $\left({ }^{\circ} \mathrm{C}\right)$ 0 20 1 35 2 50 3 65 4 85	

$$
\begin{aligned}
\text { slope } & =\frac{\Delta y}{\Delta x} \\
& =\frac{(20)-(35)}{(0)-(1)} \\
& =-\frac{15}{-1} \\
& =15
\end{aligned}
$$

d) State the units of the rise: \qquad e) State the units of the y-intercept: \qquad 0

State the units of the run: \qquad State the y-intercept with units \qquad
State slope with units:
f) Does the line pass through the origin? \qquad
g) This is called $\quad 001+i 41$ variation.

Ex. Linda burns 65 kiloJoules / minute when dancing.
Write an equation to represent \boldsymbol{E}, the energy burned in kiloJoules for \boldsymbol{T}, the time in minutes.
Slope with units: $65 \mathrm{kj} /$ minute
Equation:

$$
E=65 T
$$

\qquad

$$
\mathrm{y} \text {-intercept with units _o Jj }
$$

This is called \qquad direct variation.

Ex. The amount of gas remaining in the tank of a large truck can be calculated using the following formula: $\boldsymbol{V}=250-0.12 \boldsymbol{d}$ where \boldsymbol{V} is the volume of gas in litres left in the tank and \boldsymbol{d} is the distance driven in kilometres.
a) State units of V :
b) State units of d:
c) State the slope with units:
d) What does the slope mean in words:
e) State the y-intercept with units:
f) What does the y-intercept mean in words:

Litres
\qquad
g) Sketch a graph using slope and y-intercept. (label the axes and y-intercept)

h) What type of variation is this?
partial
5 Story Graphs
Ex. The following is a graph of John's taking a trip to the park.

Write story describing John's trip to the park.
\qquad John left home whiting alba. After 4 minutes he st field for 2
minutes. He walked a bit faster - er 2 minutes. Then
at the park for 3 minute g and then hurried home.
\qquad

$$
\begin{aligned}
& \text { starting }=0 . l i t r e s \text { in the tank } \\
& \text { i) What volume of gas remains after travelling } 850 \text { kilometres? } \\
& V=250-0,1,2 d \\
& =250-0.12(850) \\
& \begin{array}{rrr}
= & 250-102 & \therefore \text { the remaining } \\
=148 & \text { volume of gat is } \\
& 148 \text { citit }
\end{array}
\end{aligned}
$$

