- determine key features of the graphs of Rational Functions using algebraic analysis
- sketch graphs of Rational Functions by interpreting the results of algebraic analysis
- sketch the Absolute Value of a Rational Function
- sketch the "Reciprocal of a Function"

| Topic | I have reviewed it. | I have done questions. |
| :---: | :---: | :---: |
| Using Mr. One |  |  |
| Solving rational equations (state restrictions first!) |  |  |
| Determining limits to infinity i.e. $\lim _{x \rightarrow \infty} \frac{\text { constant number }}{\text { polynomial }}=0$ |  |  |
| Graphing Rational Functions (Essay style) |  |  |
| (a) Determine symmetry (replace x with -x , then y with -y ) |  |  |
| (b) Determine x - and y-intercepts |  |  |
| (c) State Restrictions (can't divide by zero) |  |  |
| (d) Determine Vertical Asymptote(s) <br> (via restrictions) \& test their behaviour using one-sided limits <br> Ex. For the behaviour of the vertical asymptote $x=4$ : |  |  |
| (e)(i) Determine the Horizontal Asymptote: $\begin{aligned} & \lim _{x \rightarrow \infty} f(x) \\ & =\mathrm{C} \\ & \therefore \text { the horizontal asymptote is } y=\mathrm{C} \end{aligned}$ <br> \& test its behaviour using $f(100) / f(-100)$ test |  |  |
| OR (ii) Determine the Slant Asymptote: $\begin{aligned} & \lim _{x \rightarrow \infty} f(x) \\ & =\lim _{x \rightarrow \infty} a x+b+\frac{\text { constant number }}{\text { polynomial }} \\ & \therefore \text { the slant asymptote is } y=a x+b \\ & \& \text { test behaviour its using } f(100) / f(-100) \text { test } \end{aligned}$ |  |  |
| (f) Other Information Ex. $f(6)=3, f(-2)=-3$ |  |  |
| (g) State the Domain and Range |  |  |
| "Puzzle Graph" - create a graph given information only |  |  |
| "Hole" in the graph <br> - always try to factor and reduce a rational function first to check for holes |  |  |
| Graphing the "Absolute Value of a Rational Function" consider the non-absolute value, graph, then reflect everything below the x -axis in the x -axis. |  |  |
| Graph the "Reciprocal of a Function", $y=\frac{1}{f(x)}$ consider $y=f(x)$ and key $y$ values: <br> when $y=0, \quad y= \pm 1, \quad y>1 / y<-1, \quad 0<y<1 \quad / \quad-1<y<0$ |  |  |

