- determine key features of the graphs of Rational Functions using algebraic analysis

- sketch graphs of Rational Functions by interpreting the results of algebraic analysis

- sketch the Absolute Value of a Rational Function

- sketch the "Reciprocal of a Function"

Topic	I have reviewed it.	I have done questions.
Using Mr. One		questions.
Solving rational equations (state restrictions first!)		
Determining limits to infinity i.e. $\lim_{x \to \infty} \frac{\text{constant number}}{\text{polynomial}} = 0$		
Graphing Rational Functions (Essay style)		
(a) Determine symmetry (replace x with $-x$, then y with $-y$)		
(b) Determine x- and y-intercepts		
(c) State Restrictions (can't divide by zero)		
(d) Determine Vertical Asymptote(s) (via restrictions)& test their behaviour using one-sided limits		
Ex. For the behaviour of the vertical asymptote $x = 4$:		
$\lim_{x \to 0^+} f(x) = \infty \qquad \qquad$		
$x \rightarrow 4^+$ $x \rightarrow 4^-$		
f(4.001) = 3599 $f(3.999) = -5999$		
(e)(i) Determine the Horizontal Asymptote:		
$\lim_{x \to \infty} f(x)$		
= C		
\therefore the horizontal asymptote is $y = C$		
& test its behaviour using $f(100) / f(-100)$ test		
OR (ii) Determine the Slant Asymptote:		
$\lim_{x \to \infty} f(x) = \frac{1}{1 - 1}$		
$x \to \infty$		
division		
$= \lim_{x \to \infty} ax + b + \frac{\text{constant number}}{\text{polynomial}} \checkmark$		
$x \to \infty$ polynomial		
\therefore the slant asymptote is $y = ax + b$		
& test behaviour its using $f(100) / f(-100)$ test		
(f) Other Information Ex. $f(6) = 3, f(-2) = -3$		
(g) State the Domain and Range		
" Puzzle Graph " - create a graph given information only		
"Hole" in the graph		
- always try to factor and reduce a rational function first to check		
for holes		
Graphing the "Absolute Value of a Rational Function"		
consider the non-absolute value, graph, then reflect everything		
below the x-axis in the x-axis.		
Graph the " Reciprocal of a Function ", $y = \frac{1}{f(x)}$		
consider $y = f(x)$ and key y values:		
when $y = 0$, $y = \pm 1$, $y > 1$ / $y < -1$, $0 < y < 1$ / $-1 < y < 0$		