MCT 4CI Learning Goals Unit 3 - Sinusoidal Functions

- to be able to graph $\mathbf{y}=\operatorname{asin}[k(x-p)]+q$ and $y=\operatorname{acos}[k(x-p)]+q$
- state the sinusoidal function's equation given the graph
- be able to do several types of sinusoidal application questions
- use basic trigonometric identities to prove complex identities

| Knowledge \& Skills | I have reviewed it | I have done questions | I think I've got this |
| :---: | :---: | :---: | :---: |
| Graphing Sinusoidal Functions |  |  |  |
| (i) Graph $\mathrm{y}=\operatorname{a\operatorname {sin}}[\mathrm{k}(\mathrm{x}-\mathrm{p})]+\mathrm{q}$, <br> Amplitude $=\mathrm{a}$ <br> Period $=\frac{360^{\circ}}{\mathrm{k}}$ <br> graphed at ( $\mathrm{p}, \mathrm{q}$ ) |  |  |  |
| (ii) Graph $\mathrm{y}=\operatorname{acos}[\mathrm{k}(\mathrm{x}-\mathrm{p})]+\mathrm{q} \quad$ (starts at a maximum) |  |  |  |
| State the properties of (i) and (ii): amplitude, period, max, min, domain, range, and translations using the equation only |  |  |  |
| State an equation given the graph |  |  |  |
| Applications Of Sinusoidal Functions |  |  |  |
| Sketch the application given the equation Ex. $d=1.8 \sin \left[\frac{360^{\circ}}{12.2}(t-2.5)\right]+3.1$ |  |  |  |
| Sketch the application given information |  |  |  |
| State the equation given information |  |  |  |
| Use the sketch to identify when maximums, minimums, and means occur |  |  |  |
| Use the equation to deteremine $\boldsymbol{d}=$ |  |  |  |
| Use the equation to determine $t$ when $\mathrm{d}=4$ for example |  |  |  |
| "Tide" Questions |  |  |  |
| "Ferris Wheel Questions" |  |  |  |
| "Tsunami Questions" |  |  |  |
| "Above and below the t-axis Questions" |  |  |  |
| "Other" Questions |  |  |  |
| Trigonometric Identities |  |  |  |
| Reciprocal Identities (2 that we use) |  |  |  |
| Quotient Identities (2) |  |  |  |
| Pythagorean Identities (3) |  |  |  |
| Types involving: |  |  |  |
| (i) Reducing, expanding, factoring |  |  |  |
| (ii) Adding / Subtracting fractions |  |  |  |
| (iii) Multi-layered fractions - Mr. One! |  |  |  |
| Or a combination of the above (i) - (iii) |  |  |  |

