- determine and interpret an "Average Rates of Change"
- determine and interpret an "Instantaneous Rate of Change"
- analyse and interpret rates of change graphically.
- determine the slope and equation of the tangent to a 'general function', $f(x)$

Knowledge and Skills	I have reviewed it.	I have done a question.
1) Position / Amount Ex. d(6) = ?		
2) Average Rate Of Change $=\frac{\Delta y}{\Delta x}$		
3) Instantaneous Rate of Changeslope of secant PQ as $\mathrm{Q} \rightarrow \mathrm{P}$ For non- polynomials: (choose 3 points below, 1 above)		
For polynomials: $\text { Instantaneous Rate of Change }=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$		
For a "general function", $\mathrm{f}(\mathrm{x})$ $\begin{aligned} \text { slope of the tangent }= & \text { slope of the secant } \mathrm{PQ} \\ & \text { as } \mathrm{Q} \rightarrow \mathrm{P} \end{aligned}$ OR $\text { slope of the tangent }=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$		
Proper Rate of Change Final Statement: (a) Velocity questions - since velocity is a special rate which describes the change in distance versus change in time we generally state: \therefore the velocity is positive value correct units direction Ex. \therefore the velocity is 62.5 kilometres per hour left (b) For other rate questions we generally state: \therefore the thing that's changing is (increasing or decreasing) at positive value correct units Ex. The mass is decreasing at 5.77 milligrams per minute.		
Find equation of the tangent to $f(x)$ at $\mathrm{x}=$		
"Story Graphs" (Hot Wheels)		
- interpret a graph		
- create a graph		

