(1) Multiplying Three-Digit Numbers by One-Digit Numbers

When Should I Multiply?

Multiplication situations can appear to be very different even though they are the same mathematically. It is important to know when a problem can be solved using multiplication.

For example, the problems below can be solved using multiplication.

- You can calculate the total of two or more equal-sized groups.

There are 3 boxes with 125 books in each. How many books are there altogether?

- You can calculate the result of a comparison when one item is so many times another in size.
Kalia is buying a used tablet for $\$ 115$. A new tablet costs 4 times as much. How much does a new tablet cost?
 (continued)

Multiplication Strategies - Conventional Algorithms

There are many ways to multiply using conventional, or standard, algorithms.

- One way involves decomposing, or breaking up the greater factor into place-value parts, multiplying each part, and then adding the parts together. This is often called the partial-products algorithm.

For example, to calculate 3×249 (the total of 3 groups of 249):
$249=200+40+9$
So, 3 groups of $249=3$ groups of $200+3$ groups of $40+3$ groups of 9 .
So, $3 \times 249=3 \times 200+3 \times 40+3 \times 9$.
The base ten block model below shows 3×249 as 3 groups of 249 .
You can also see 3 groups of $200+3$ groups of $40+3$ groups of 9 .
The total is 6 hundreds blocks (600) +12 tens blocks (120) +27 ones blocks (27).

After combining and regrouping the blocks, you have the product: 747.

Here are some ways to record this.

249		249	
$\times \quad 3$			
600	(3 groups of 200)	$\times \quad 3$	
120	(3 groups of 40)	27	(3 groups of 9)
$+\quad 27$	(3 groups of 9)	120	(3 groups of 40)
747		+600	(3 groups of 200)

Multiplication Strategies - Conventional Algorithms (continued)

- Here is another conventional algorithm for multiplication. It also involves multiplying in place-value parts. Starting with the ones, you multiply each part and regroup as you go, rather than at the end.

For example, to calculate 3×249 (the total of 3 groups of 249), model 3×249 as 3 groups of 249 .

249
$\begin{array}{r} \\ \times \quad 3 \\ \hline\end{array}$

Multiply the ones: 3×9 ones $=27$ ones.
Regroup 20 ones as 2 tens: 27 ones $=2$ tens 7 ones.
Record 7 in the ones place of the product and 2 above the tens place.

Multiply the tens: 3×4 tens $=12$ tens.
Add the extra 2 tens: 12 tens +2 tens $=14$ tens.
Regroup 10 tens for 1 hundred: 14 tens = 1 hundred, 4 tens.
Record 4 in the tens place of the product and 1 above the hundreds place:

Multiplication Strategies - Conventional Algorithms (continued)

Multiply the hundreds: 3×2 hundreds $=6$ hundreds.
Add the extra 1 hundred: 6 hundreds +1 hundred $=7$ hundreds.
Record 7 in the hundreds place of the product:

Estimating to Check Products

It is always a good idea to estimate to check a product.

- You usually use factors that can be multiplied mentally.
- It can be helpful to know if your estimate is high or low.

Here are some ways to estimate 3×249.

- It can help to think of 3×249 as 3 groups of 249 to understand why some estimates are high or low.
3×249 is about $3 \times 200=600$.
Notice that 600 is a very low estimate. That's because each of the 3 groups is a lot smaller than the factor 249.
A product of 747 seems reasonable, knowing that 600 is a very low estimate.
3×249 is about $3 \times 250=750$.
Notice that 750 is a close but high estimate. That's because each of the 3 groups is a little bit bigger than the factor 249.
A product of 747 seems reasonable, knowing that 750 is a very close but high estimate.

請UP
 (1)

Estimating to Check Products (continued)

- You can also estimate using a range.
3×249 is about halfway between $3 \times 200=600$ and $3 \times 300=900$.
The halfway point between 600 and 900 is 750 .
So, 3×249 is about 750 .
A product of 747 seems reasonable.

Notes

Multiplication sentences are usually described the following ways for consistency, although, mathematically, both 2×216 and 216×2 are correct.

- For equal-group situations:

2 groups of 216 would be written as 2×216.

- For comparison situations:

2 times as many as 216 would be written as 2×216.

Definitions

algorithm: a multistep process for performing a calculation
decomposition: the process of separating a number into parts; for example, $123=100+20+3$ or $50=2 \times 25$
factor: one of the numbers you multiply in a multiplication sentence; for example, in $2 \times 5=10,2$ and 5 are factors
product: the result of multiplying; for example, in $3 \times 4=12,12$ is the product
regroup: to represent a number in a different way without changing its value; for example, 3000 can be modelled as 3 thousands, which can be regrouped as 30 hundreds; 4 tens 5 ones can be regrouped as 3 tens 15 ones

