## UNIT 8



## Fractions of a Whole

LESSON

## Quick Review

- Fractions describe equal parts of a whole.


3 equal parts are thirds.
$\frac{1}{3}$ is shaded.


5 equal parts are fifths. $\frac{4}{5}$ are shaded.


8 equal parts are eighths. $\frac{5}{8}$ are shaded.

The denominator tells how many equal parts are in 1 whole.


The numerator tells how many equal parts are counted.

- A proper fraction represents an amount less than 1 whole. $\frac{5}{8}$ is a proper fraction.


## Try These

1. Write a fraction to tell what part of each figure is shaded.
a)

b)


- 

c)

2. Colour some of the equal parts of each figure. Write a fraction to describe the coloured parts.
a) $\square$
$\qquad$
b)


c)

$\qquad$

Play this game with a partner.
You will need:
2 number cubes
2 pencil crayons or crayons of different colours
Take turns making fractions.
> Roll the number cubes. Use the greater number as the denominator.

- Find a figure on the game board that can be used to show your fraction. Colour the figure. Write the fraction.
- If there is no figure that can be used, you lose your turn.
> Keep playing until all the figures are coloured.

|  |  |  |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |

## Stretch Your Thinking

This figure represents $\frac{3}{5}$ of one whole. Show what the whole might look like.


## Fraction Benchmarks

## Quick Review

You can use the benchmarks of $0, \frac{1}{2}$, and 1 to tell about how big a fraction is.

$\frac{7}{8}$ is closer to 1 .

$\frac{5}{12}$ is closer to $\frac{1}{2}$.
It is a little less than $\frac{1}{2}$.
$\square$
$\frac{2}{12}$ is closer to 0 .


## Try These

1. Colour each strip to show a fraction.

Write whether the fraction is closer to $0, \frac{1}{2}$, or 1 .
a)

b)

2. A trashcan is not quite full. Write a fraction that might tell how full it is.

## Practice

Play this game with a partner.
You will need:
Index cards with these fractions written on them:
$\frac{1}{3}, \frac{2}{3}, \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{1}{6}, \frac{2}{6}, \frac{4}{6}, \frac{5}{6}, \frac{1}{8}, \frac{2}{8}, \frac{3}{8}, \frac{5}{8}, \frac{6}{8}, \frac{7}{8}, \frac{1}{12}, \frac{2}{12}, \frac{4}{12}, \frac{5}{12}, \frac{7}{12}, \frac{8}{12}, \frac{10}{12}, \frac{11}{12}$
A paper bag
Strips of paper 15 cm long

## Crayons

Put the fraction cards in the bag.
Take turns.
> Draw a card from the bag.

- Estimate whether the fraction is closer to $0, \frac{1}{2}$, or 1 .
$>$ Fold and colour a paper strip to show the fraction.
- Line up your strip with this number line to check your estimate.

> You get a point if your estimate was right.
> Your partner gets a point if your estimate was wrong.
- Keep playing until one player has 10 points.


## Stretch Your Thinking

1. Name a fraction between 0 and $\frac{1}{2}$ that is neither closer to 0 nor closer to $\frac{1}{2}$.
2. Name a fraction that is between $\frac{1}{2}$ and 1 that is neither closer to $\frac{1}{2}$ nor closer to 1.

## Fractions of a Set

LESSON

## Quick Review

You can use fractions to show equal parts of a set.


Here is a way to find $\frac{5}{6}$ of 18 .
The denominator lets us know we are counting sixths.
Divide 18 counters into 6 equal groups to show sixths.


## Try These

Draw a picture to show the fraction of each set.

| $\frac{1}{2}$ of $10=\ldots$ | $\frac{2}{3}$ of $9=$ |
| :---: | :---: |
| $\frac{4}{5}$ of $15=\ldots$ |  |

## Practice

1. Write a fraction for the shaded part of each set.
a)

b)

c)

2. Use counters to find the fraction of each set.
a) $\frac{1}{2}$ of $14=$ $\qquad$ b) $\frac{2}{6}$ of $18=$ $\qquad$ c) $\frac{3}{5}$ of $15=$ $\qquad$
d) $\frac{3}{8}$ of $16=$ $\qquad$
e) $\frac{3}{4}$ of $12=$ $\qquad$ f) $\frac{6}{10}$ of $20=$ $\qquad$
g) $\frac{7}{7}$ of $14=$ $\qquad$ h) $\frac{7}{8}$ of $24=$ $\qquad$ d) $\frac{2}{3}$ of $15=$ $\qquad$
3. On Pet Day, 18 children brought a pet to school.

Two thirds of the pets were dogs. One ninth of the pets were cats.
a) How many dogs were there? $\qquad$
b) How many cats were there? $\qquad$
c) How many animals were neither dogs nor cats? $\qquad$

## Stretch Your Thinking

1. Choose letters from the box.
a) Write a word that uses $\frac{1}{2}$ of the letters.
b) Write a word that uses $\frac{3}{5}$ of the letters.

## A 1 T $M U L$ <br> R

O ES

## Different Names for Fractions

## CESSON

## Quick Review

Equivalent fractions are fractions that name the same amount.

| 1 Whole |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{2}$ |  |  | $\frac{1}{2}$ |  |  |
| $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ | $\frac{1}{6}$ |


| 1 Whole |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{2}$ |  |  |  | $\frac{1}{2}$ |  |  |  |
| $\frac{1}{4}$ |  |  | $\frac{1}{4}$ | $\frac{1}{4}$ |  | $\frac{1}{4}$ |  |
| $\frac{1}{8}$ |

$\frac{1}{2}$ and $\frac{3}{6}$ are equivalent fractions.
$\frac{3}{4}$ and $\frac{6}{8}$ are equivalent fractions.

## Try These

1. Write an equivalent fraction for each fraction.

| 1 Whole |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{5}$ |  | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ |  | $\frac{1}{5}$ |  |  |
| $\frac{1}{10}$ |

a) $\frac{1}{5}$ $\qquad$ b) $\frac{2}{5}$ $\qquad$
c) $\frac{3}{5}$ $\qquad$
d) $\frac{4}{5}$ $\qquad$ e) $\frac{5}{5}$
$\qquad$
2. Write equivalent fractions to name the shaded part of each figure.
a)

b)

|  |  |  |
| :--- | :--- | :--- |
|  |  |  |

c)

|  |  |  |
| :--- | :--- | :--- |
|  | $\cdots$ |  |
|  |  |  |

## Practice

1. Fold paper strips to find an equivalent fraction for each fraction.
a) $\frac{3}{6}$ $\qquad$ b) $\frac{1}{2}$ $\qquad$ c) $\frac{2}{4}$ $\qquad$
d) $\frac{3}{3}$ $\qquad$
e) $\frac{3}{4}$ $\qquad$
f) $\frac{2}{8}$
$\qquad$
2. a) A pizza is divided into 12 equal slices. 4 slices have mushrooms only. 6 slices have pepperoni only. 2 slices have mushrooms and pepperoni. Write two equivalent fractions to describe the parts of the pizza with mushrooms only: $\qquad$ and $\qquad$ pepperoni only: $\qquad$ and $\qquad$

mushrooms and pepperoni: $\qquad$ and $\qquad$
b) Nine slices of pizza were eaten.

Write two equivalent fractions for this amount. $\qquad$ and $\qquad$ Write two equivalent fractions for how much pizza was not eaten.
$\qquad$ and $\qquad$

## Stretch Your Thinking

Use the diagram.
Write four equivalent fractions to name the shaded part.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

|  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

