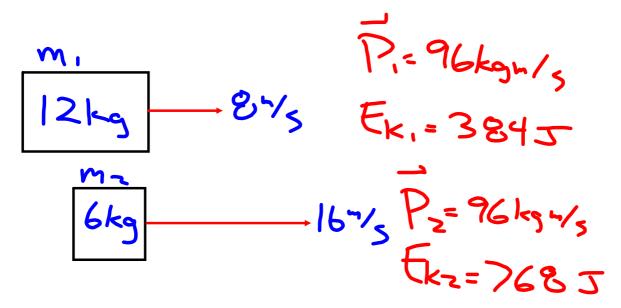


Energy is the capacity to do work

Work: the energy transferred to an object by an applied force over a measured distance.

Relating Momentum to Kinetic Energy

Objects with the same momentum may have different kinetic energy values.

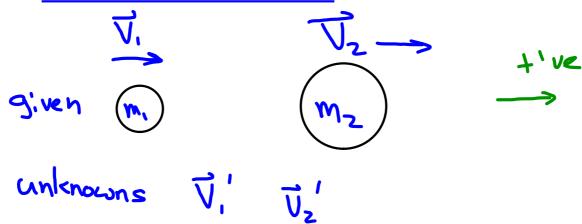


Example: Determine the kinetic energy of a 160g hockey puck that has a momentum of 4.8 kg·m/s

$$V = P_{m} = 30\%$$

 $E_{k} = \frac{1}{2}m(\frac{P}{2})^{2}$
 $E_{k} = \frac{1}{2}m(\frac{P}{2})^{2}$
 $E_{k} = \frac{1}{2}m(\frac{P}{2})^{2}$

Elastic vs Inelastic Collisions



Momentum is always conserved

①
$$M_1 \vec{V}_1 + M_2 \vec{V}_2 = M_1 \vec{V}_1' + M_2 \vec{V}_2'$$

Total Energy is always conserved

then the collision is called elastic

if kinetic energy is lost (or gained)

the collision is called inelastic

@M, V, 2 + M = V2 = KM, V, 2 + M = V, 2 EKTOT = EKTOT EM, V, 2 + FM = N5 = FM, N, 2 + FM = N5 | 5 EM, V, 2 + M = N5 = FM, N, 2 + FM = N5 | 5 EM, V, 2 + M = N5 = M, N, 2 + M = N, 12 EM, V, 2 + M = N5 = M, N, 2 + M = N, 12 EM, V, 2 + M = N5 = M, N, 2 + M = N, 12 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M = N5 = M, N, 12 + M = N, 13 EM, V, 2 + M, 13 EM, V, 2

Solving Elastic Collision Problems

let Vz=0. (assume mz stationary) 1) M, (V,-V,')= MzVz

Sub 3 into 0; she

$$M_{1}(V_{1}-V_{1})=M_{2}(V_{1}+V_{1})$$

m, V, -m, V, = M ~ V, + M ~ V,

$$\gamma_1, V_1 - m_2 V_1 = \gamma_1 V_1 + m_2 V_1$$

$$V_{1} = \left(\frac{M^{1}-M^{2}}{M^{1}+M^{2}}\right)V_{1} \times$$

$$\int_{S_{1}} = \left(\frac{M^{14}M^{2}}{5M^{1}}\right) \int_{1}^{1}$$

Collision Cart Examples:

Example : 2 Objects collide in an elastic collision (1 object moving,

> 4. ne

0.4=2V,'+0.5Vz' =.

0 V2'=0.8-4V, sub into @ ; solve for V,

EK=EKT (2)(.2)2+3(.5)(0)2=3(2)V13+3(0.5)V2 © 0.08 = 51,5 + 0.215

0.08=51,15+0.2(0.8-41,1)5

0.08=2V,2+0.5(0.64-6.4V)

0.08=2V,5 + 10V, / +&V,12

10V,'2-3.2V,'+0.24=0

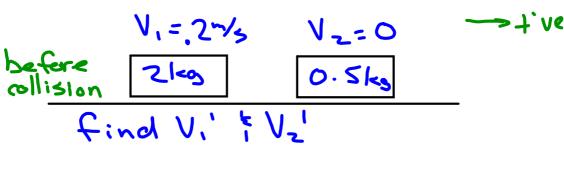
V.'=0.2 or 0.12

V2 = 0

0.32 4/

Collision Cart Examples:

Example: 2 Objects collide in an elastic collision (1 object moving, 1 object stationary)



often $V_1'=?$ $V_2'=?$ collision Z_{kg}

elastic | linear |
$$V_2 = 0$$
 | $V_1' = (\frac{M_1 - M_2}{M_1 + M_2}) V_1$ | $= (\frac{Z - .5}{2 + .5}) . 2 m/s$ | $= (\frac{J.5}{2.5}) . 2 m/s$ | $= (\frac{J$

Collisions

Momentum is conserved

Energy is Conserved $E_i = E_f$

Elastic Collision Kinetic Energy is Conserved

Inelastic Collision Kinetic Energy is NOT Conserved

Special Case: Head On Collision

- no angular components
- one object at rest at beginning

$$V_{1}' = \left(\frac{m_{1} - m_{2}}{m_{1} + m_{2}}\right) V_{1}$$

$$V_{1}' = \left(\frac{m_{1} - m_{2}}{m_{1} + m_{2}}\right) V_{1} \qquad V_{2}' = \left(\frac{2m_{1}}{m_{1} + m_{2}}\right) V_{1}$$

Three Scenarios for V₁'

- 1. $m_1 > m_2 (a big mass hits a smaller mass), then <math>m_1 m_2$ is positive and V_1' is positive, meaning m₁ keeps going in the same direction but at a lesser speed
- 2. $m_1 < m_2 (a smaller mass hits a bigger mass), then <math>m_1 m_2$ is negative and V₁' is negative, meaning m₁ bounces back in the opposite direction to what it was going before the collision
- $m_1=m_2$, (equal masses) then m_1-m_2 is zero and V_1 ' is zero.

Scenario for V₂'

The second equation shows that m2 rebounds in the same direction that m1 came into the collision (i.e. V_2 and \tilde{V}_1 are in the same direction).

If m1=m2, then $V_2'=V_1$ (m₂ rebounds at the same speed that m₁ started with).