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4.54.5
Elastic Potential Energy and 

Simple Harmonic Motion 
Imagine that you are to design a cord that will be used for bungee jumping from a bridge
to a river (Figure 1). Although the distance between the bridge and the river is constant,
the masses of the jumpers vary. The cord should offer complete and consistent safety, while
at the same time providing a good bounce to prolong the thrill of jumping.

How could you analyze the force exerted by an elastic device, such as a bungee cord?
What happens when the energy is transformed, as a person attached to the cord bounces
up and down? A situation that involves the force changing as the cord is squeezed or
compressed is more complex that the situations that we have looked at so far.

Hooke’s Law 
The force exerted by an elastic device varies as the device is
stretched or compressed. To analyze the force mathematically,
consider a horizontal spring attached to a wall and resting on a
surface with negligible friction (Figure 2(a)). The position at
which the spring rests, x � 0, is the equilibrium position. If a
force is applied to the spring, stretching the spring to the right
of equilibrium, the spring pulls back to the left as shown in
Figure 2(b). Similarly, if a force is applied to compress the spring
to the left of equilibrium, the spring pushes back to the right. In
both cases, the direction of the force exerted by the spring is
opposite to the direction of the force applied to the spring.

x = 0
+ x

+ x

Fx = force exerted
by spring on hand

x

(equilibrium)

Figure 2
(a) A spring at its equilibrium position 
(b) If the spring is stretched to the right, it exerts a

force to the left: Fx = �kx.

(a)

(b)

Figure 1
How would you test the properties
of a bungee cord?
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Experiments with springs show that the magnitude of the force exerted by the spring
is directly proportional to the distance the spring has moved from equilibrium. This
relationship is known as Hooke’s law, after Robert Hooke (1635–1703), who published
his law and its corresponding equation in 1678. Any spring that obeys Hooke’s law is
called an ideal spring because it experiences no friction, either internal or external.
Using k as the constant of proportionality, we can write Hooke’s law for the force exerted
by a spring in equation form, in this case with horizontal components to correspond to
the situation in Figure 2(b):

Fx = �kx

where Fx is the force exerted by the spring, x is the position of the spring relative to equi-
librium, and k (the proportionality constant) is the force constant of the spring. Springs
that require a large force to stretch or compress them have large k values.

According to Hooke’s law, if x 	 0, then Fx 
 0. In other words, if the spring is stretched
in the �x direction, it pulls in the opposite direction. Similarly, if x 
 0, then Fx 	 0, which
means that if the spring is compressed in the �x direction, it pushes in the opposite
direction.

Since �kx indicates the force exerted by the spring, we can apply Newton’s third law
to find that �kx is the force applied to the spring to stretch or compress it to position x.
Thus, Hooke’s law for the force applied to a spring is:

Fx � kx

Although we have been referring to springs, Hooke’s law applies to any elastic device
for which the magnitude of the force exerted by the device is directly proportional to the
distance the device moves from equilibrium.

force constant (k) the proportion-
ality constant of a spring

A student stretches a spring horizontally a distance of 15 mm by applying a force of
0.18 N [E].  

(a) Determine the force constant of the spring. 

(b) What is the force exerted by the spring on the student?

Solution 
(a) Fx � 0.18 N 

x � 15 mm � 0.015 m

k � ? 

Since the force is applied to the spring, we use the equation 

Fx � kx

k � �
F

x
x
�

� �
0
0
.0
.1
1
8
5

N
m

�

k � 12 N/m

The force constant is 12 N/m. (Notice the SI units of the force constant.) 

(b) According to Newton’s third law, if the force applied to the spring is 0.18 N [E], then
the force exerted by the spring is 0.18 N [W]. 

Forces Exerted by and 
Applied to a Spring 
It is important to remember
which force is exerted by the
spring and which is applied to
the spring. For example, a graph
of the force exerted by the
spring as a function of x has a
negative slope. A graph of the
force applied to the spring as a
function of x has a positive
slope. The magnitude of the
force exerted by a spring is
written either as  kx or as
k x .

LEARNING TIP

Hooke’s Law in General
To eliminate the need for new
symbols, we use the same
Hooke’s-law equations for
springs lying on an inclined
plane or suspended vertically, as
for springs in the horizontal
plane. For example, in the ver-
tical plane, F � kx is the force
applied to a spring, while the
extension x is the change in the
y position from the equilibrium
position. 

LEARNING TIP

ideal spring a spring that obeys
Hooke’s law because it experiences
no internal or external friction

Hooke’s law the magnitude of the
force exerted by a spring is directly
proportional to the distance the
spring has moved from equilibrium

SAMPLE problem 1
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A ball of mass 0.075 kg is hung from a vertical spring that is allowed to stretch slowly from
its unstretched equilibrium position until it comes to a new equilibrium position 0.15 m
below the initial one. Figure 3(a) is a system diagram of the situation, and Figure 3(b) is
an FBD of the ball at its new equilibrium position.

(a) Determine the force constant of the spring. 

(b) If the ball is returned to the spring’s unstretched equilibrium position and then
allowed to fall, what is the net force on the ball when it has dropped 0.071 m?

(c) Determine the acceleration of the ball at the position specified in (b). 

Solution 
(a) We measure the extension x of the spring from its original unstretched position 

(x � 0) and choose �x to be downward. Two vertical forces act on the ball: gravity
and the upward force of the spring. At the new equilibrium position, the ball is sta-
tionary, so the net force acting on it is zero.

m � 0.075 kg

x � 0.15 m

k � ?

�Fx � 0

mg � (�kx) � 0

k � �
m
x
g
�

�

k � 4.9 N/m

The force constant is 4.9 N/m. 

(b) Figure 4 is the FBD for the ball when x � 0.071 m. Considering the components of
the forces in the vertical (x) direction:

�Fx � mg � (�kx)

� (0.075 kg)(9.8 N/kg) � (4.9 N/m)(0.071 m)

�Fx � �0.39 N

The net force is 0.39 N [down] when the ball has dropped to 0.071 m. 

(0.075 kg)(9.8 N/kg)
���

0.15 m

+x

�kx

mg = |�kx |

mg

+x

x = 0

x = 0.15 m

Figure 3
(a) The system diagram 
(b) The FBD of the ball when the

extension is 0.15 m

(a) (b)

+x

�kx

mg > |�kx |

mg

Figure 4
The FBD of the ball when the 
extension is 0.071 m

SAMPLE problem 2
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In our applications of Hooke’s law, we have assumed that the springs are ideal. To
discover how real springs compare to ideal springs, you can perform Investigation 4.5.1
in the Lab Activities section at the end of this chapter.

Testing Real Springs (p. 220)
A graph of the force applied to an
ideal extension spring suspended
vertically yields a single straight line
with a positive slope. How do you
think a graph of the force applied to
a real extension spring would 
compare? 

INVESTIGATION 4.5.1

Practice
Understanding Concepts 

1. Spring A has a force constant of 68 N/m. Spring B has a force constant of 48 N/m.
Which spring is harder to stretch? 

2. If you pull northward on a spring, in what direction does the spring exert a force on
you? 

3. An ideal spring has a force constant of 25 N/m. 
(a) What magnitude of force would the spring exert on you if you stretched it from

equilibrium by 16 cm? by 32 cm?
(b) What magnitude of force would you have to exert on the spring to compress it

from equilibrium by 16 cm? by 32 cm?

4. Figure 5 shows the design of a tire-pressure gauge. The force constant of the spring
in the gauge is 3.2 � 102 N/m. Determine the magnitude of the force applied by the
air in the tire if the spring is compressed by 2.0 cm. Assume the spring is ideal.

plunger

2.0 cm

force applied
by air under pressure

pressure
indicator

air under pressure

tire valve
2.0 cm

Figure 5
A pressure gauge indicates the force per unit area, a quantity 
measured in pascals, or newtons per square metre (1 Pa � 1 N/m2).

Answers

3. (a) 4.0 N; 8.0 N

(b) 4.0 N; 8.0 N

4. 6.4 N

(c) �Fy � 0.39 N

ay � ? 

Applying Newton’s second law: 

�Fy � may

ay �

�

ay � 5.2 m/s2

The acceleration is 5.2 m/s2 [down] when the ball is at a spring extension of 0.071 m.

0.39 N
�
0.075 kg

�Fy
�

m
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Answers

5. (a) 0.0258 m

(b) 5.16 N [down]

(c) 2.02 m/s2 [down]

5. A 1.37-kg fish is hung from a vertical spring scale with a force constant of
5.20 � 102 N/m. The spring obeys Hooke’s law. 
(a) By how much does the spring stretch if it stretches slowly to a new equilibrium

position? 
(b) If the fish is attached to the unstretched spring scale and allowed to fall, what is

the net force on the fish when it has fallen 1.59 cm?
(c) Determine the acceleration of the fish after it has fallen 2.05 cm. 

Applying Inquiry Skills 

6. (a) Draw a graph of Fx as a function of x for an ideal spring, where Fx is the 
x-component of the force exerted by the spring on whatever is stretching 
(or compressing) it to position x. Include both positive and negative 
values of x. 

(b) Is the slope of your graph positive or negative? 

Making Connections 

7. Spring scales are designed to measure weight but are sometimes calibrated to indi-
cate mass. You are given a spring scale with a force constant of 80.0 N/m. 
(a) Prepare a data table to indicate the stretch that would occur if masses of 1.00 kg,

2.00 kg, and on up to 8.00 kg were suspended from the scale at your location. 
(b) Draw a scale diagram to show the calibration of the scale if it is set up to

measure 
(i) mass at your location 
(ii) weight at your location

(c) If both springs in (b) were taken to the top of a high mountain, would they give
the correct values? Explain.

Elastic Potential Energy 
When an archer draws a bow, work is done on the limbs of the bow, giving them poten-
tial energy. The energy stored in objects that are stretched, compressed, bent, or twisted
is called elastic potential energy. In the case of the bow, the stored energy can be trans-
ferred to the arrow, which gains kinetic energy as it leaves the bow.

To derive an equation for elastic potential energy, we consider the work done on an
ideal spring in stretching or compressing it. Recall from Practice question 7 in Section
4.1 that the area under the line on a force-displacement graph indicates the work. For a
constant force, the area is a rectangle. However, the force applied to an ideal spring
depends on the displacement, so the area of the graph is a triangle (Figure 6). Since the 

area of a triangle is equal to �
1
2

� bh, we have:

W � �
1
2

�x(kx)

W � �
1
2

�kx2

where W is the work, k is the force constant of the spring, and x is the amount of stretch
or compression of the spring from the equilibrium position. Since this work has been
transformed into elastic potential energy, we can rewrite the equation as

Ee � �
1
2

�kx2

where Ee is the elastic potential energy.

elastic potential energy (Ee ) the
energy stored in an object that is
stretched, compressed, bent, or
twisted

0
base = x

Fx

height = kx

x

Figure 6
The magnitude of the force applied
to a spring as a function of x
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An apple of mass 0.10 kg is attached to a vertical spring with a force constant of 9.6 N/m.
The apple is held so that the spring is at its unstretched equilibrium position, then it is
allowed to fall. Neglect the mass of the spring and its kinetic energy.

(a) How much elastic potential energy is stored in the spring when the apple has fallen
11 cm? 

(b) What is the speed of the apple when it has fallen 11 cm?

Solution 
(a) We measure the extension x of the spring from its original unstretched position 

( x � 0) and choose �x to be downward (Figure 7). 

x � 11 cm � 0.11 m

k � 9.6 N/m 

Ee � ? 

Ee � �
1
2

�kx2

� �
1
2

�(9.6 N/m)(0.11 m)2

Ee � 5.8 � 10�2 J

The elastic potential energy stored in the spring is 5.8 � 10�2 J. 

Simplified Symbols
Various symbols are used to
distinguish initial and final con-
ditions. For example, v��i or v��1
can be used to represent an ini-
tial velocity, and v��f or v��2 can be
used to represent a final
velocity. We can also use the
prime symbol (�) to represent
the final condition. For example,
we can use EK for the initial
kinetic energy, and EK� for the
final kinetic energy. Using the
prime symbol helps simplify the
equations for the law of conser-
vation of energy and the law of
conservation of momentum.

LEARNING TIP

+x

x = 0 (unstretched position)

x = 11 cm

Figure 7

Elastic potential energy can be transformed into other forms of energy, such as the
kinetic energy of an arrow shot by a bow, the sound energy of a guitar string, or the
gravitational potential energy of a pole-vaulter at the top of the jump. As you can see from
these examples, elastic potential energy can be stored in objects other than springs.

SAMPLE problem 3
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3.65 m

centre of
target

32.5°

Figure 8
A student-designed launching pad
for a spring

(b) We use the prime symbol (�) to represent the final condition of the apple. To apply the
law of conservation of energy to determine v �, we include the elastic potential energy. 

m � 0.10 kg 

x � 0.11 m (for the gravitational potential energy of the apple at the initial 
position relative to the final position)

v � 0

k � 9.6 N/m 

g � 9.8 m/s2

x� � 0.11 m (the extension of the spring when the apple is at the final position) 

EK � Ee � 0

v � � ? 

ET � ET�

Eg � EK � Ee � (Eg � EK � Ee)�

Eg � (EK � Ee)�

mgx � �
1
2

�mv �2 � �
1
2

�kx�2

�
1
2

� mv �2 � mgx � �
1
2

�kx�2

v � � � �2gx �� �
kx
m

�2
��

� � �2(9.8 m�/s2)(0.�11 m) �����
v � � � 1.0 m/s

We choose the positive root because speed is always positive. The speed of the apple
is 1.0 m/s. 

(9.6 N/m)(0.11 m)2
��

0.10 kg

A group of students participating in an annual “Spring Wars Contest” is given a spring
and the following challenge: Launch the spring so that it leaves a launching pad at an
angle of 32.5° above the horizontal and strikes a target at the same elevation, a horizontal
distance of 3.65 m away (Figure 8). Friction and air resistance are negligible. 

(a) What measurements must the students make before they perform the calculations
and launch their springs? 

(b) Calculate the stretch needed for the spring to reach the target if the spring’s mass is
15.4 g and its force constant is 28.5 N/m. 

Solution 
(a) As the spring is stretched, it gains elastic potential energy Ee � �

1
2

�kx2. 

According to the law of conservation of energy, when the spring is released, 

this energy is converted into kinetic energy (EK � �
1
2

�mv2). The spring then 

moves as a projectile, covering a horizontal range given by the 

projectile motion equation from Section 1.4, �x � �
v

g
i
2

� sin 2v. (Note that �x is 

the horizontal range, which is not to be confused with the extension x of a spring.)
The force constant and the mass of the spring must be measured experimentally. 
The other variables are either given or can be calculated. 

SAMPLE problem 4
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TRYTHIS activity Hitting the Target 

Using ideas from Sample Problem 4, design an adjustable
launching pad for firing a spring (provided by your teacher)
from any angle above the horizontal toward a target at least
3.00 m away and at the same vertical height as the spring.
Determine the mass and force constant of your spring, and then
calculate the stretch needed to launch the spring at a given

angle to hit the target. If the spring is not “ideal,” make adjust-
ments to the launch so that your spring comes closer to the
target.

Perform this activity away from other people.

Wear safety goggles in case the spring misfires.

(b) We begin by calculating the speed of a projectile needed to cover the horizontal
range. 

�x � 3.65 m v � 32.5°

g � 9.80 m/s2 v � ? 

�x � �
v
g

2
� sin 2v

v2 � �
s
g
in

�

2
x
v

�

v � � ��
� � ���
� � 6.28 m/s

v � 6.28 m/s

We choose the positive root because speed is always positive. Since the elastic
potential energy changes into kinetic energy, we apply the law of conservation of
energy equation to find the stretch x of the spring: 

m � 15.4 g � 0.0154 kg v � 6.28 m/s 

k � 28.5 N/m x � ? 

Ee � EK

�
1
2

�kx2 � �
1
2

�mv2

x2 � �
m

k
v2
�

x � � ��
m

k
v2
��

� � ���
x � �0.146 m

The required stretch is 0.146 m, or 14.6 cm. (The negative root would apply to a com-
pression spring.)

(0.0154 kg)(6.28 m/s)2
���

28.5 N/m

(9.80 m/s2)(3.65 m)
���

sin 2(32.5°)

g�x
�
sin 2v
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Practice
Understanding Concepts 

8. Figure 9 is a graph of the force as a function of stretch for a certain spring. 
(a) Is the force applied to or by the spring? Explain your answer.
(b) Determine the force constant of the spring. 
(c) Use the graph to determine the elastic potential energy stored in the spring after

it has been stretched 35 cm. 

9. A spring has a force constant of 9.0 � 103 N/m. What is the elastic potential energy
stored in the spring when it is (a) stretched 1.0 cm and (b) compressed 2.0 cm?

10. A child’s toy shoots a rubber dart of mass 7.8 g, using a compressed spring with a
force constant of 3.5 � 102 N/m. The spring is initially compressed 4.5 cm. All the
elastic potential energy is converted into the kinetic energy of the dart.
(a) What is the elastic potential energy of the spring? 
(b) What is the speed of the dart as it leaves the toy?

11. In a game, a small block is fired from a compressed spring up a plastic ramp into var-
ious holes for scoring. The mass of the block is 3.5 � 10�3 kg. The spring’s force con-
stant is 9.5 N/m. Friction is negligible.
(a) If the block is to slide up the ramp through a vertical height of 5.7 cm, by how

much must the spring be compressed? 
(b) If friction were not negligible, would your answer in (a) increase, decrease, or

remain the same? Explain. 

12. A 0.20-kg mass is hung from a vertical spring of force constant 55 N/m. When the
spring is released from its unstretched equilibrium position, the mass is allowed to
fall. Use the law of conservation of energy to determine
(a) the speed of the mass after it falls 1.5 cm 
(b) the distance the mass will fall before reversing direction

13. A horizontal spring, of force constant 12 N/m, is mounted at the edge of a lab bench
to shoot marbles at targets on the floor 93.0 cm below. A marble of mass 8.3 �
10�3 kg is shot from the spring, which is initially compressed a distance of 4.0 cm.
How far does the marble travel horizontally before hitting the floor?

Applying Inquiry Skills 

14. You are designing a toy that would allow your friends to bounce up and down when
hanging (safely) onto a vertical spring. 
(a) What measurement(s) would you make to determine the approximate force con-

stant the spring would need to allow a maximum stretch of 75 cm when a person
was suspended at rest from it? 

(b) Estimate the approximate force constant for such a spring. Show your
calculations. 

Making Connections 

15. Scientists analyze the muscles of a great variety of animals and insects. For example,
when a flea jumps, the energy is provided not by muscles alone, but also by an
elastic protein that has been compressed like a spring. If a flea of mass 2.0 � 102 mg
jumps vertically to a height of 65 mm, and 75% of the energy comes from elastic
potential energy stored in the protein, determine the initial quantity of elastic poten-
tial energy. Neglect energy losses due to air resistance. 

0

–5

–10

–15

0.20

F x 
(N

)

x (m)
0.40

Figure 9

Answers

8. (b) 38 N/m

(c) 2.3 J

9. (a) 0.45 J

(b) 1.8 J

10. (a) 0.35 J

(b) 9.5 m/s

11. (a) 2.0 cm

12. (a) 0.48 m/s

(b) 0.071 m

13. 0.66 m 

15. 9.6 � 10�8 J
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Simple Harmonic Motion 
When a mass on the end of a spring vibrates in line with the central axis of the spring,
it undergoes longitudinal vibration. Consider the longitudinal vibration of a mass on a
flat surface, connected to the end of a horizontal spring that can be stretched or com-
pressed (Figure 10(a)). The mass is initially at its equilibrium or rest position (x � 0).
A force is then applied to pull the mass to a maximum displacement, called the ampli-
tude A (Figure 10(b)). If the mass is released at this stage, the force exerted by the spring
accelerates it to the left, as in Figure 10(c). The force exerted by the spring varies with the
stretch x according to Hooke’s law, Fx � �kx.

After the mass in Figure 10(c) is released, it accelerates until it reaches maximum
speed as it passes through the equilibrium position. The mass then begins to compress
the spring so that the displacement is to the left. However, since the restoring force of the
spring is now to the right, the acceleration is also to the right. Again, the displacement
and the acceleration are in opposite directions. The mass slows down and comes to a
momentary stop at x � �A, as shown in Figure 10(d), and then moves to the right
through the equilibrium position at maximum speed, and reaches x � A again.

Since we are neglecting friction both in the spring and between the mass and the sur-
face, this back-and-forth motion continues indefinitely in simple harmonic motion
(SHM). SHM is defined as a periodic vibratory motion in which the force (and the

acceleration) is directly proportional to the displacement. Be careful
not to confuse simple harmonic motion with other back-and-forth
motions. For example, if basketball players are running back and forth
across a gym during practice, their motion is not SHM, even though
the time taken for each trip may be constant.

A convenient way to analyze SHM mathematically is to combine
Hooke’s law and Newton’s second law with a reference circle (Figure 11).
Imagine a mass attached to a horizontal spring, vibrating back and
forth with SHM. At the same time, a handle pointing upward from a
rotating disk revolves with uniform circular motion; the circular motion
of the handle provides the reference circle. The frequency of revolution
of the circular motion equals the frequency of vibration of the SHM,
and the motions synchronize with one another. (Technically, we can say
that the motions are in phase with one another.) Furthermore, the
radius of the circle equals the amplitude of the SHM. A bright light
source can be aimed from the side of the disk so that it casts a shadow
of the upright handle onto the mass in SHM, and this shadow appears
to have the same motion as the mass. This verifies that we can use
equations from uniform circular motion to derive equations for SHM.

Recall that the magnitude of the acceleration of an object in uni-
form circular motion with a radius r and a period T is given by

ac � �
4
T
p

2

2r
�

which we can rewrite as

T 2 � �
4p

ac

2r
� or T � 2p��

a
r

c
��

Since r = A for the reference circle in Figure 11,

T � 2p ��
a
A

c
��

ideal spring mass

acceleration
of mass

�x

x = 0

x = A

Fspring = �kx

Fapp = kx

(a)

(b)

(c)

(d)

Fspring = �kx

Fspring = kx

x = �A

acceleration
of mass

Figure 10
Using the longitudinal vibration of a mass-spring system
to define simple harmonic motion (SHM) 
(a) The equilibrium position 
(b) The position of maximum stretch 
(c) Releasing the mass 
(d) The position of maximum compression

simple harmonic motion (SHM)
periodic vibratory motion in which
the force (and the acceleration) is
directly proportional to the 
displacement

Walking and SHM
As you are walking, your foot swings
back and forth with a motion that
resembles the SHM of a pendulum.
The speed of your foot during parts
of the cycle is approximately 1.5
times the speed of your forward
motion.

DID YOU KNOW ??
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This period is not only the period of revolution of any point on the reference circle, but
it is also the period of the mass undergoing SHM, since this mass has the same motion
as the shadow of the handle.

Although the handle on the reference circle is undergoing uniform circular accelera-
tion, its shadow is undergoing the same acceleration as the mass attached to the spring.
This acceleration is not constant, as can be shown by applying Hooke’s law (Fx � �kx)
and Newton’s second law (Fx � max). If we equate the right-hand sides of these 

equations, then �kx � max , from which ax � �
�

m
kx
�. Thus, since k and m are constants,

the acceleration of a mass (and the shadow of the handle) undergoing SHM is propor-
tional to the displacement, x, from the equilibrium position. Furthermore, the acceler-
ation is opposite to the direction of the displacement, as indicated by the negative sign.

The relationship between the displacement and the acceleration can be written as 

�
�

ax

x
� � �

m
k
�; that is, the ratio of the displacement to the acceleration is constant. But in the 

equation that we developed for the period of SHM, the ratio �
a
A

c
� is one specific value of the 

more general ratio of �
�
ax

x
� . Thus, a general equation for the period of SHM is 

T � 2p ��
�
ax

x
��

The equation always yields a positive value under the square root sign because x and ax
have opposite signs.

If we substitute �
�
ax

x
� � �

m
k
� , then

T � 2p ��
m
k
��

where T is the period in seconds, m is the mass in kilograms, and k is the force constant
of the spring in newtons per metre.

Section 4.5

The Period and Frequency 
of SHM
Like other periodic motions, SHM
has a period and a frequency. The
period T, measured in seconds, is
the amount of time for one com-
plete cycle. Frequency f, which is
measured in hertz (Hz), is the
number of cycles per second.
Since period and frequency are
reciprocals of one another

f � �
1
T

� and T � �
1
f
�.

LEARNING TIP

x

direction of
acceleration at
instant shown

light source

direction of
revolution of
handle

handle

rotating
disk

� x

A

r

mass

shadow
of handle

Figure 11
A reference circle. The handle on
the disk is revolving with uniform
circular motion, at the same fre-
quency as the mass on the end of
the spring is undergoing SHM. As
the light source causes a shadow of
the handle to be superimposed on
the mass, the motions appear to be
identical when viewed from the side.
We use the motion of the reference
circle to derive equations for SHM.
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Simple Pendulums 
A simple pendulum undergoes SHM
if the oscillations have a small
amplitude. In this case, the equation

for the period is T � 2p ��
g
L

�� ,

where L is the length of the pen-
dulum and g is the magnitude of the
acceleration due to gravity. 

DID YOU KNOW ??

Since the frequency is the reciprocal of the period,

f � �
2
1
p
� ��

m
k
��

These equations for the SHM of a mass–spring system apply even if the motion is
vertical. The horizontal motion was used in the derivations because we did not have to
consider gravity.

A 0.45-kg mass is attached to a spring with a force constant of 1.4 � 102 N/m. The mass-
spring system is placed horizontally, with the mass resting on a surface that has negligible
friction. The mass is displaced 15 cm, and is then released. Determine the period and 
frequency of the SHM. 

Solution 
m � 0.45 kg 

k � 1.4 � 102 N/m 

A � 15 cm � 0.15 m

T � ? 

f � ? 

T � 2p ��
m
k
��

� 2p ��1.4 �

0.4�1
5
02
kg

N/�m
��

T � 0.36 s

Now, f � �
1
T

�

�

f � 2.8 Hz

The period and the frequency of the motion are 0.36 s and 2.8 Hz.

1
�
0.36 s

Practice
Understanding Concepts 

16. A vertical mass–spring system is bouncing up and down with SHM of amplitude
A. Identify the location(s) at which
(a) the magnitude of the displacement from the equilibrium position is at a

maximum
(b) the speed is at a maximum 
(c) the speed is at a minimum 
(d) the magnitude of the acceleration is at a maximum 
(e) the magnitude of the acceleration is at a minimum 

17. Determine the period and frequency, in SI units, for the following:
(a) a human eye blinks 12 times in 48 s
(b) a compact disc rotates at a rate of 210 revolutions per minute
(c) the A string on a guitar vibrates 2200 times in 5.0 s

Answers

17. (a) 4.0 s; 0.25 Hz

(b) 0.29 s; 3.5 Hz

(c) 2.3 � 10�3 s; 
4.4 � 102 Hz

SAMPLE problem 5
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Energy in Simple Harmonic Motion and 
Damped Harmonic Motion 
We have seen that the elastic potential energy in an ideal spring when it is stretched or 

compressed a displacement x is �
1
2

�kx2. Let us now look at the  energy transformations in 

an ideal spring that undergoes SHM, as in Figure 12. The spring is first stretched to the
right, to x � A, from its equilibrium position, then released. The elastic potential energy
is at a maximum at x � A:

Ee � �
1
2

�kA2

According to the law of conservation of energy, when the mass is released, the total
energy ET of the system is the sum of the elastic potential energy in the spring and the
kinetic energy of the mass. Thus,

ET � �
1
2

�kx2 � �
1
2

�mv2

where k is the spring constant, x is the displacement of the mass from the equilibrium
position, m is the mass at the end of the spring, and v is the instantaneous speed of the
mass. As we will now see, the conservation of mechanical energy can be used to solve prob-
lems involving SHM.

Answers

18. (a) 1.7 � 102 cm

(b) 0.27 s

19. 25 N/m

20. 2.6 kg

x = 0

EK = max
Ee = 0

EK = 0
Ee = max

EK = 0
Ee = max

x = �A x = A

�x

Figure 12
Mechanical energy in a
mass–spring system

18. A 0.25-kg mass is attached to the end of a spring that is attached horizontally to
a wall. When the mass is displaced 8.5 cm and then released, it undergoes SHM.
The force constant of the spring is 1.4 � 102 N/m. The amplitude remains 
constant. 
(a) How far does the mass move in the first five cycles?
(b) What is the period of vibration of the mass-spring system?

19. A 0.10-kg mass is attached to a spring and set into 2.5-Hz vibratory motion.
What is the force constant of the spring? 

20. What mass, hung from a spring of force constant 1.4 � 102 N/m, will give a
mass-spring system a period of vibration of 0.85 s?

Applying Inquiry Skills 

21. Show that ��
a
x
�� and ��

m
k
�� are dimensionally equivalent. 

Making Connections 

22. To build up the amplitude of vibration in a trampoline, you move up and down
on the trampoline 6.0 times in 8.0 s without losing contact with the surface. 
(a) Estimate the force constant of the trampoline. 
(b) If you bounce into the air above the trampoline with a regular period of

bouncing, are you undergoing SHM? Explain. 
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damped harmonic motion peri-
odic or repeated motion in which
the amplitude of vibration and the
energy decrease with time

A 55-g box is attached to a horizontal spring of force constant 24 N/m. The spring is then
compressed to a position A � 8.6 cm to the left of the equilibrium position. The box is
released and undergoes SHM. 

(a) What is the speed of the box when it is at position x � 5.1 cm from the equilibrium
position?

(b) What is the maximum speed of the box?

Solution 
(a) We use the prime symbol (�) to represent the final condition. We apply the law of

conservation of mechanical energy at the two positions of the box, the initial position
A and the final position x�. 

A � 8.6 cm � 0.086 m

m � 55 g � 0.055 kg

x � � 5.1 cm � 0.051 m

k � 24 N/m 

v � � ? 

ET � ET�

Ee � EK � Ee�� EK�

�
k
2
A2
� � 0 � � �

m
2
v �2
�

kA2 � kx�2 � mv�2

v � � ��
m
k
�(A2� � x�2�)� (discarding the negative root)

� ��
0
2
.
4
05

N
5
/�k
m
g

� �(0�.086 m�)2 � (0�.051 m�)2��
v � � 1.4 m/s

The speed of the box is 1.4 m/s. 

(b) The maximum speed occurs when x� = 0. 

v � � ��
m
k
�(A2� � x�2�)�

� ��0
2
.
4
05

N
5
/�k
m
g� (0.0�86 m)2�

v � � 1.8 m/s

The maximum speed of the box is 1.8 m/s. 

kx�2
�

2

In many practical situations involving a mass–spring system, it would be a disadvan-
tage to have SHM. For example, if you were to step onto a bathroom scale to find your mass
or weight, you would not want the spring in the scale to undergo SHM. You would expect
the spring to settle down quickly and come to rest so you could observe the reading. This
“settling down” is called damping. Damped harmonic motion is periodic or repeated
motion in which the amplitude of vibration and thus the energy decrease with time.
A typical displacement-time curve representing damped harmonic motion with a fairly
long damping time is shown in Figure 13.

SAMPLE problem 6



Work and Energy 217NEL

Section 4.5

One way to study the damping properties of a real spring is to set up a mass–spring
system vertically, start the mass vibrating with an appropriate amplitude, and observe the
vibrations. Investigation 4.5.2, in the Lab Activities section at the end of this chapter,
gives you an opportunity for such a study.

A bathroom scale is one example of a device specifically designed for damping. Another
example is the system of springs and shock absorbers in a car. When a wheel goes over
a bump in the road, the wheel’s spring and shock absorber are compressed easily, but they
are designed to quickly stop bouncing up and down. The energy given to the spring and
shock absorber is dissipated, or transformed into other types of energy. To find out
more about the spring and shock absorbers on automobiles, you can perform 
Activity 4.5.1 in the Lab Activities section at the end of this chapter.

Analyzing Forces and Energies 
in a Mass–Spring System 
(p. 222)
If you were given a spring and
appropriate measuring apparatus,
you could determine the force con-
stant of a spring. You could then
apply the conservation of energy to
predict the motion that will occur
when a known mass, attached verti-
cally to the end of the spring, is
released from rest from the
unstretched equilibrium position.
What measurements would you
need to make to determine the
damping properties of the spring
when the mass is set into vibration? 

INVESTIGATION 4.5.2

Achieving a Smooth and 
Safe Ride (p. 223)
Springs and shock absorbers on an
automobile help create a smooth
and safe ride for the occupants.
What happens to the energy of
vibration produced when the auto-
mobile goes over a bump?

ACTIVITY 4.5.1

Practice
Understanding Concepts 

23. Figures 14(a) and (b) show a mass–spring system undergoing SHM at maximum
compression and maximum extension. 
(a) At what length(s) of the spring is the speed of the mass at a minimum? What is

that speed?
(b) At what length(s) of the spring is the speed of the mass at a maximum? What is

that speed?
(c) What is the amplitude of the SHM? 

24. The maximum energy of a mass–spring system undergoing SHM is 5.64 J. The mass
is 0.128 kg and the force constant is 244 N/m.
(a) What is the amplitude of the vibration?
(b) Use two different approaches to determine the maximum speed of the mass.
(c) Find the speed of the mass when it is 15.5 cm from the equilibrium position.

25. The amplitude of vibration of a mass on a spring experiencing SHM is 0.18 m. 
The mass is 58 g and the force constant is 36 N/m. 
(a) Find the maximum energy of the system and the maximum speed of the mass. 
(b) What amplitude of vibration would be required to double the maximum energy?
(c) What is the maximum speed of the mass at this new energy? 

26. Prove that the maximum speed of a mass on a spring in SHM is given by 2pfA. 

(a) (b)

38 cm12 cm

Figure 14

Answers

23. (a) 12 cm; 38 cm; zero

(b) 25 cm; zero

(c) 13 cm

24. (a) 0.215 m

(b) 9.39 m/s

(c) 6.51 m/s

25. (a) 0.58 J; 4.5 m/s

(b) 0.25 m

(c) 6.3 m/s

�

�

0

D
is

pl
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em
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t

Time

decreasing
amplitide

“envelope” of
the damping

Figure 13
A displacement-time curve repre-
senting damped harmonic motion. The
overall outline of the curve is called the
envelope of the damping.
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• Hooke’s law for an ideal spring states that the magnitude of the force exerted by
or applied to a spring is directly proportional to the displacement the spring has
moved from equilibrium.

• The constant of proportionality k in Hooke’s law is the force constant of the
spring, measured in newtons per metre.

• Elastic potential energy is the energy stored in objects that are stretched, com-
pressed, twisted, or bent.

• The elastic potential energy stored in a spring is proportional to the force con-
stant of the spring and to the square of the stretch or compression.

• Simple harmonic motion (SHM) is periodic vibratory motion such that the force
(and thus the acceleration) is directly proportional to the displacement.

• A reference circle can be used to derive equations for the period and frequency of
SHM.

• The law of conservation of mechanical energy can be applied to a mass–spring
system and includes elastic potential energy, kinetic energy, and, in the case of
vertical systems, gravitational potential energy.

• Damped harmonic motion is periodic motion in which the amplitude of vibra-
tion and the energy decrease with time.

Elastic Potential Energy and 
Simple Harmonic MotionSUMMARY

Applying Inquiry Skills 

27. (a) Determine the dimensions of the expression ��
m
k
� (A2� � x2�). 

(b) Explain in words the meaning of this expression.

Making Connections 

28. State whether each of the following devices is designed to have fast, medium, or slow
damping. Give a reason for each answer.
(a) the prongs of a tuning fork
(b) the needle on an analog voltmeter
(c) a guitar string 
(d) saloon doors (of the swinging type)
(e) the string on an archer’s bow after the arrow leaves the bow

Section 4.5 Questions
Understanding Concepts 
Note: For the following questions, unless otherwise stated,
assume that all springs obey Hooke’s law.

1. Two students pull equally hard on a horizontal spring
attached firmly to a wall. They then detach the spring from
the wall and pull horizontally on its ends. If they each pull
equally hard, is the amount of stretch of the spring equal
to, greater than, or less than the first stretch? Explain your
answer. (Hint: Draw an FBD for the spring in each case.)

2. Is the amount of elastic potential energy stored in a spring
greater when the spring is stretched 2.0 cm than when it is
compressed by the same amount? Explain your answer. 

3. What does “harmonic” mean in the term “simple harmonic
motion?”

4. State the relationship, if any, between the following sets of
variables. Where possible, write a mathematical variation
( proportionality) statement based on the appropriate 
equation.
(a) period and frequency
(b) acceleration and displacement in SHM
(c) period and the force constant for a mass on a spring in

SHM
(d) the maximum speed of a body in SHM and the ampli-

tude of its motion 
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5. A student of mass 62 kg stands on an upholstered chair
containing springs, each of force constant 2.4 � 103 N/m. If
the student is supported equally by six springs, what is the
compression of each spring?

6. What magnitude of force will stretch a spring of force con-
stant 78 N/m by 2.3 cm from equilibrium?

7. The coiled spring in a hand exerciser compresses by 
1.85 cm when a force of 85.5 N is applied. Determine the
force needed to compress the spring by 4.95 cm.

8. A trailer of mass 97 kg is connected by a spring of force
constant 2.2 � 103 N/m to an SUV. By how much does the
spring stretch when the SUV causes the trailer to undergo
an acceleration of magnitude 0.45 m/s2? 

9. A grapefruit of mass 289 g is attached to an unstretched
vertical spring of force constant 18.7 N/m, and is allowed
to fall. 
(a) Determine the net force and the acceleration on the

grapefruit when it is 10.0 cm below the unstretched
position and moving downward.

(b) Air resistance will cause the grapefruit to come to rest
at some equilibrium position. How far will the spring be
stretched? 

10. A bungee jumper of mass 64.5 kg (including safety gear) is
standing on a platform 48.0 m above a river. The length of
the unstretched bungee cord is 10.1 m. The force constant
of the cord is 65.5 N/m. The jumper falls from rest and just
touches the water at a speed of zero. The cord acts like an
ideal spring. Use conservation of energy to determine the
jumper’s speed at a height of 12.5 m above the water on
the first fall. 

11. A toy car is attached to a horizontal spring. A force of 8.6 N
exerted on the car causes the spring to stretch 9.4 cm. 
(a) What is the force constant of the spring?
(b) What is the maximum energy of the toy-spring system? 

12. If the maximum amplitude of vibration that a human
eardrum can withstand is 1.0 � 10�7 m, and if the energy
stored in the eardrum membrane is 1.0 � 10�13 J, deter-
mine the force constant of the eardrum.

13. A 22-kg crate slides from rest down a ramp inclined at 29°
to the horizontal (Figure 15) onto a spring of force con-
stant 8.9 � 102 N/m. The spring is compressed a distance
of 0.30 m before the crate stops. Determine the total dis-
tance the crate slides along the ramp. Friction is 
negligible. 

14. A 0.20-kg ball attached to a vertical spring of force con-
stant 28 N/m is released from rest from the unstretched
equilibrium position of the spring. Determine how far the
ball falls, under negligible air resistance, before being
brought to a momentary stop by the spring. 

Applying Inquiry Skills 

15. Figure 16 shows the energy relationships of a 0.12-kg
mass undergoing SHM on a horizontal spring. The quantity
x is the displacement from the equilibrium position. 
(a) Which line represents (i) the total energy, (ii) the

kinetic energy, and (iii) the elastic potential energy?
(b) What is the amplitude of the SHM?
(c) What is the force constant of the spring?
(d) What is the maximum speed of the mass?

16. You are given a spring comprised of 24 coils that has a
force constant of 24 N/m. 
(a) If this spring were cut into two equal pieces, would the

force constant of each new spring be equal to, greater
than, or less than 24 N/m? Explain.

(b) With your teacher’s permission, design and carry out
an experiment to test your answer in (a). Explain what
you discover. 

Making Connections 

17. The shock absorbers in the suspension system of a truck are
in such poor condition that they have no effect on the behav-
iour of the springs attached to the axles. Each of the two
identical springs attached to the rear axle supports 5.5 �
102 kg. After going over a severe bump, the rear end of the
truck vibrates through six cycles in 3.5 s. Determine the force
constant of each spring.

18. In designing components to be sent on board a satellite,
engineers perform tests to ensure that the components can
withstand accelerations with a magnitude as high as 25g.
In one test, the computer is attached securely to a frame
that is vibrated back and forth in SHM with a frequency of
8.9 Hz. What is the minimum amplitude of vibration used in
this test? 

29°

Figure 15
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