Introduction to Centripetal Force (formula practice)

$F_{c}=\frac{m v^{2}}{r}$

1. How much centripetal force is required to spin a 4.0 kg mass at a velocity of $2 \mathrm{~m} / \mathrm{s}$ with a radius of 8 m ? (2 N)
2. How much centripetal force is required to spin a 14.0 kg mass at a velocity of $3.00 \mathrm{~m} / \mathrm{s}$ with a radius of 4.00 m ? (31.5N)
$F_{c}=\frac{4 \pi^{2} m r}{T^{2}}$
3. Determine the centripetal force that it would take to spin a 5.0 kg mass around a radius of 4.0 m with a period of 3.0 s . (88 N)
4. Determine the centripetal force that it would take to spin a 10 kg mass around a radius of 2.0 m with a period of 6.0 s . (22 N)
5. Determine the centripetal force that it would take to spin a 70.0 kg mass around a radius of 6.00 m with a period of 8.00 s . (259N).
$F_{c}=4 \pi^{2} m r f^{2}$
6. If a mass of 2.000 kg is spun in a circle with radius 3.000 m at a frequency of 4.000 Hz, calculate the centripetal force needed. (3790N).
7. If a mass of 6.00 kg is spun in a circle of radius 2.00 m at a frequency of 3.00 Hz , calculate the centripetal force needed. (4260N).
8. If a mass of 80 kg is spun in a circle with radius of 5.0 m at a frequency of 2.0 Hz , calculate the centripetal force needed. $\left(6.3 \times 10^{4} \mathrm{~N}\right)$
$M=\frac{4 \pi^{2} r^{3}}{G T^{2}} \quad G=6.67 \times 10^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
9. Determine the mass of a planet if one of its moons orbits at a radius of $6 \times 10^{8} \mathrm{~m}$ and has a period of $4 \times 10^{5} \mathrm{~s}$. $\left(8 \times 10^{26} \mathrm{~kg}\right)$
10. Determine the mass of a planet if one of its moons orbits at a radius of $5.0 \times 10^{7} \mathrm{~m}$ and has a period of $3.0 \times 10^{4} \mathrm{~s} .\left(8.2 \times 10^{25} \mathrm{~kg}\right)$.
$v=\sqrt{\frac{G M}{r}}$
11. How fast would a object have to rotate around a planet (mass of the planet $=6.0 \times 10^{24} \mathrm{~kg}$) if its radius of orbit was $6.4 \times 10^{6} \mathrm{~m}$? ($7900 \mathrm{~m} / \mathrm{s}$)
12. How fast would an object have to rotate around a planet (mass of planet $=4.0 \times 10^{22} \mathrm{~kg}$) if its radius of orbit is $3.0 \times 10^{5} \mathrm{~m}$? $\left(3.0 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)$
