1. A horizontal force of 50.0 N is required to pull a 8.0 kg block of aluminum at a uniform velocity across a horizontal wooden desk. What is the coefficient of kinetic friction between the block and the desk?
2. A 125 kg block of steel is being pushed across a wooden floor. If the coefficient of static friction (μ_{s}) is 0.45 and the coefficient of kinetic friction (μ_{k}) is 0.25 calculate the minimum force required to get the steel block moving and the force required to keep it moving once it is moving at a constant speed.
3. The driver of a $2.00 \times 10^{3} \mathrm{~kg}$ car applies the brakes on a dry concrete roadway. Calculate the force of friction between the tires and the road surface if $\mu_{\mathrm{k}}=1.02$.
4. A $2.0 \times 10^{1} \mathrm{~kg}$ box is dragged across a level floor with a force of $1.00 \times 10^{2} \mathrm{~N}$. The coefficient of kinetic friction between the box and the floor is 0.32 .
a. If the force is applied parallel to the floor (see diagram below), what is the acceleration of the box?
b. If the force is applied at an angle of 40° above the horizontal, what is the acceleration of the box?
a.

5. A boy on a toboggan is sliding down a snow-covered hillside. The boy and the toboggan together have a mass of 50 kg , and the slope is at an angle of 30° to the horizontal.
a. Find the boy's acceleration if there is no friction.
b. Find the boy's acceleration if the coefficient of kinetic friction is 0.15 .
6. A 10 kg block of ice slides down a ramp 20 m long inclined at 10° to the horizontal.
a. If the ramp is frictionless, what is the acceleration of the block of ice?
b. If the coefficient of kinetic friction is 0.10 , how long will it take the block to slide down the ramp, if it starts from rest?
7. A skier has just begun descending a 20° slope. Assuming that the coefficient of kinetic friction is 0.10 , calculate
a. The acceleration of the skier
b. Her final velocity after 8.0s (assume she starts from rest).
8. A skier skiing downhill reaches the bottom of a hollow with velocity of $20 \mathrm{~m} / \mathrm{s}$ and then coasts up a hill with a 30° slope. If the coefficient of kinetic friction is 0.10 , how far up the slope will she travel before she stops?

Answers :

1. $\mu_{\mathrm{k}}=0.64$
2. $\mathrm{F}_{\mathrm{f}}=551$ (to get it moving), $\mathrm{F}_{\mathrm{f}}=306 \mathrm{~N}$ to keep it moving
3. $\mathrm{F}_{\mathrm{f}}=19992 \mathrm{~N}$
4. a. $a=1.9 \mathrm{~m} / \mathrm{s}^{2}[$ right $]$
b. $\mathrm{a}=1.7 \mathrm{~m} / \mathrm{s}^{2}$ [right]
5. a. $a=4.9 \mathrm{~m} / \mathrm{s}^{2}$
b. $a=3.6 \mathrm{~m} / \mathrm{s}^{2}$
6. a. $a=1.7 \mathrm{~m} / \mathrm{s}^{2} \quad$ b. $\mathrm{t}=7.4 \mathrm{~s}$
7. a. $a=2.4 \mathrm{~m} / \mathrm{s}^{2}$
b. $v_{2}=19 \mathrm{~m} / \mathrm{s}$
8. $d=35 m$
