- 1. A horizontal force of 50.0N is required to pull a 8.0kg block of aluminum at a <u>uniform</u> velocity across a horizontal wooden desk. What is the coefficient of kinetic friction between the block and the desk?
- 2. A 125kg block of steel is being pushed across a wooden floor. If the coefficient of static friction (μ_s) is 0.45 and the coefficient of kinetic friction (μ_k) is 0.25 calculate the minimum force required to get the steel block moving and the force required to keep it moving once it is moving at a constant speed.
- 3. The driver of a 2.00×10^3 kg car applies the brakes on a dry concrete roadway. Calculate the force of friction between the tires and the road surface if μ_k =1.02.
- 4. A 2.0x10¹ kg box is dragged across a level floor with a force of 1.00x10²N. The coefficient of kinetic friction between the box and the floor is 0.32.
 - a. If the force is applied parallel to the floor (see diagram below), what is the acceleration of the box?
 - b. If the force is applied at an angle of 40° above the horizontal, what is the acceleration of the box?

- 5. A boy on a toboggan is sliding down a snow-covered hillside. The boy and the toboggan together have a mass of 50kg, and the slope is at an angle of 30° to the horizontal.
 - a. Find the boy's acceleration if there is no friction.
 - b. Find the boy's acceleration if the coefficient of kinetic friction is 0.15.
- 6. A 10 kg block of ice slides down a ramp 20m long inclined at 10° to the horizontal.
 - a. If the ramp is frictionless, what is the acceleration of the block of ice?
 - b. If the coefficient of kinetic friction is 0.10, how long will it take the block to slide down the ramp, if it starts from rest?
- A skier has just begun descending a 20° slope. Assuming that the coefficient of kinetic friction is 0.10, calculate
 - a. The acceleration of the skier
 - b. Her final velocity after 8.0s (assume she starts from rest).
- 8. A skier skiing downhill reaches the bottom of a hollow with velocity of 20m/s and then coasts up a hill with a 30° slope. If the coefficient of kinetic friction is 0.10, how far up the slope will she travel before she stops?

Answers :

1. μ _k =0.64	2. F_f =551 (to get it moving), F_f =306N to keep it moving			3. F _f =19992N
4. a. a=1.9m/s ² [right]	b. a=1.7 m/s ² [right]	5. a. a=4.9m/s ²	b. a=3.6m/s ²	
6. a. a=1.7 m/s ² b. t=7.	4s 7. a. a=2.4 m/s	² b. v ₂ =19m/s		8. d=35m