<u>SPH3UI : Unit 1 Kinematics</u> <u>Accelerated Motion Word Problems</u>

- 1. Calculate the acceleration in each case:
 - a. $\Delta v = 72 \, m/s[W]$; $\Delta t = 6.0s$
 - b. $\Delta v = 8.4 \, m/s[E]; \Delta t = 6.0s$
 - c. $\Delta v = -35 m/s[S]; \Delta t = 6.0s$
 - d. $\Delta v = 42 \, m/s[W]; \Delta t = 1.5s$
- 2. A motorcyclist took only 6.0 seconds to go from rest to 78 m/s earning the world record for motorcycle acceleration.
 - a. Calculate the magnitude of the record average acceleration.
 - b. How far did the motorcycle travel during this time interval?
- 3. Calculate the average acceleration needed by a train travelling initially at 12 m/s [E] to stop in 120s.
- 4. A car speeds up from rest to 100 km/hr in 60 seconds.
 - a. What is the magnitude of the acceleration in m/s^2 ?
 - b. How far did the car travel during this time period?
- 5. A ball is rolling with a velocity of 2.4 m/s [W] when it hits a wall and bounces. After bouncing off the wall the ball's velocity 0.62s later is 2.0 m/s [E]. Calculate the balls average acceleration during this time period.
- 6. The table below shows the change in velocity over time for an accelerating missile as it starts its launch.
 - a. Plot the velocity-time graph and determine the average acceleration.
 - b. Calculate displacement at each time shown and plot the displacement-time graph.

time	Velocity	displacement
(s)	(m/s [E])	(m [E])
0.0	0.0	0.0
0.2	15	
0.4	30	
0.6	45	
0.8	60	
1.0	75	

