Note \#7 : Mirror and Magnification Equations

The characteristics of an image can be predicted using ray diagrams or by using equations.

Mirror Equation

Where :
$f=$ focal length (positive if concave, negative if convex)
$d_{i}=$ distance between the mirror and the image (measured along the principal axis from the vertex) d_{i} is positive if the image is real d_{i} is negative if the image is virtual (negative d_{i} means behind the mirror)
$d_{0}=$ distance between the mirror and the object

Magnification Equation

Where :

$m=$ magnification
If the magnitude of $m>1$, the image is larger (it is magnified)
If the magnitude m is between 0 and 1 then the image is smaller If m is negative then the image is inverted.
$h_{i}=$ the height of the image
h_{i} is positive if the image is upright
h_{i} is negative if the image is inverted
$h_{o}=$ the height of the object

Spherical Aberration

When light rays that are parallel to the principal axis hit a curved mirror near the edges, the reflected rays do not at the focal point. As a result the focal point becomes spread out over a larger area and the image becomes distorted (or blurry).

Home Work: Page 427 \# 1-5; Page 430 \# 3,5,6; Page 436 \# 1-7; Page 438 \# 2,3

