Note #7: Mirror and Magnification Equations

The characteristics of an image can be predicted using ray diagrams or by using equations.

Mirror Equation

$$rac{1}{f}=rac{1}{d_i}+rac{1}{d_o}$$

Where:

f = focal length (positive if concave, negative if convex)

 d_i = distance between the mirror and the image (measured along the principal axis from the vertex) d_i is positive if the image is real

d; is negative if the image is virtual (negative d; means behind the mirror)

*d*_o= distance between the mirror and the object

Magnification Equation

$$m=rac{h_i}{h_o}=-rac{d_i}{d_o}$$

Where:

m = *magnification*

If the magnitude of m > 1, the image is larger (it is magnified) If the magnitude m is between 0 and 1 then the image is smaller If m is negative then the image is inverted.

h; = the height of the image

 h_i is positive if the image is upright

h, is negative if the image is inverted

h_o= the height of the object

Spherical Aberration

When light rays that are parallel to the principal axis hit a curved mirror near the edges, the reflected rays do not at the focal point. As a result the focal point becomes spread out over a larger area and the image becomes distorted (or blurry).

Home Work: Page 427 # 1-5; Page 430 # 3,5,6; Page 436 # 1-7; Page 438 # 2,3