

Pool Hall Physics

1. The diagram below shows two identical billiard balls before and after a "glancing collision". Using a vector diagram find the final velocity of ball 1. (Hint : Since the masses of the two balls are the same, you can draw velocity vectors instead of momentum vectors).

After the Collision

Before the Collision

2. The following three diagrams are partial diagrams of a moving ball (the white one) striking a stationary ball (the black one). The masses of the balls are equal. Find the velocity (including direction of the missing ball).
a. $\quad V_{1}=4.2 \mathrm{~cm} / \mathrm{s}[E], \mathrm{V}_{2}=0, \mathrm{~V}_{1}{ }^{\prime}=3.0 \mathrm{~cm} / \mathrm{s}\left[E 31^{\circ} \mathrm{S}\right]$, find $\mathrm{V}_{2}{ }^{\prime}$
b. $\quad V_{1}=52.5 \mathrm{~cm} / \mathrm{s}[E], \mathrm{V}_{2}=0, \mathrm{~V}_{2}{ }^{\prime}=21 \mathrm{~cm} / \mathrm{s}\left[E 60^{\circ} \mathrm{N}\right]$, find $\mathrm{V}_{1}{ }^{\prime}$
c. $\quad V_{2}=0, V_{1}^{\prime}=37.5 \mathrm{~cm} / \mathrm{s}\left[E 45^{\circ} \mathrm{N}\right], \mathrm{V}_{2}{ }^{\prime}=38 \mathrm{~cm} / \mathrm{s}\left[\mathrm{S} 36^{\circ} \mathrm{E}\right]$, find V_{1}
a.

c.

1. $\mathrm{V}_{1}{ }^{\prime}=8.7 \mathrm{~m} / \mathrm{s}\left[\mathrm{E} 30^{\circ} \mathrm{N}\right], 2 \mathrm{a} . \mathrm{V}_{2}{ }^{\prime}=2.2 \mathrm{~cm} / \mathrm{s}\left[\mathrm{E} 43^{\circ} \mathrm{N}\right], 2 \mathrm{~b} . \mathrm{V}_{1}{ }^{\prime}=45.8 \mathrm{~cm} / \mathrm{s}\left[\mathrm{E} 23^{\circ} \mathrm{S}\right], 2 \mathrm{c} . \mathrm{V}_{1}=49.0 \mathrm{~cm} / \mathrm{s}\left[\mathrm{E} 5^{\circ} \mathrm{S}\right]$

Momentum before something "pops" apart must equal the momentum after $P_{i}=P_{f}$
If it is stationary at the beginning then the total momentum must equal zero.

1. A device that "pops" apart into three separate pieces is initially at rest on a horizontal surface. It pops into three pieces and all of them fly off horizontally. The first piece is 2.0 kg and flies off at $20.0 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$, the second piece is 3.0 kg and flies off at $12 \mathrm{~m} / \mathrm{s}$ [E30 ${ }^{\circ} \mathrm{N}$]. The third piece flies off at $30.0 \mathrm{~m} / \mathrm{s}$
a. Find the direction that the third piece goes off at.
b. What is the mass of the third piece?
2. A large 1.2 kg firecracker is thrown horizontally at a velocity of $1.5 \mathrm{~m} / \mathrm{s}$ [E]. If blows into 3 pieces that fly off on the same horizontal plane. A 0.50 kg piece flies to the north at $3.0 \mathrm{~m} / \mathrm{s}$ and a 0.30 kg piece goes southwest at $4.0 \mathrm{~m} / \mathrm{s}$. Find the velocity of the third piece (remember to include a direction).

Linear Momentum (along a line)

3. Suppose that a 75.0 kg soccer goalie catches a 0.40 kg ball that is moving at $32 \mathrm{~m} / \mathrm{s}$. With what forward velocity must the goalie jump when she catches the ball so that the goalie and the ball have a resultant horizontal velocity of zero?

Momentum with Angles

4. A billiard ball of mass 0.155 kg is rolling directly North at $3.5 \mathrm{~m} / \mathrm{s}$. It collides with a stationary golf ball of mass 0.052 kg . The billiard ball rolls off at an angle [$\mathrm{N} 15^{\circ} \mathrm{E}$] with a velocity of $3.1 \mathrm{~m} / \mathrm{s}$.

What is the resultant velocity of the golf ball?
5. A 750 g red ball travelling at $0.30 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$ approaches a 550 g blue ball travelling at $0.50 \mathrm{~m} / \mathrm{s}[\mathrm{W}]$. They have a glancing collision and the red ball moves away at $0.15 \mathrm{~m} / \mathrm{s}\left[\mathrm{E} 30^{\circ} \mathrm{S}\right]$ and the blue ball moves away in a north-westerly direction.

What is the final velocity of the blue ball?
6. The police are investigating an accident involving a collision at an intersection between two cars. After colliding, the cars locked together and skidded off the road. One street runs north-south and the other street runs east-west, the two streets meet at a 90°.

The car travelling North had a mass of 2275 kg and the one travelling East had a mass of 1525 kg . From the skid marks and the data for the friction between the tires and concrete, the police determined that the cars when they were locked together had a velocity of $31 \mathrm{~km} / \mathrm{hr}$ at an angle of 43° North of the East bound street.

If the speed limit on both streets was $35 \mathrm{~km} / \mathrm{hr}$, should one or both cars be ticketed for speeding?

[^0]
[^0]: 1a. [W62 $\left.{ }^{\circ} \mathrm{S}\right]$ 1b. 2.2kg $2.6 .8 \mathrm{~m} / \mathrm{s}\left[\mathrm{E} 14^{\circ} \mathrm{S}\right] 3.0 .18 \mathrm{~m} / \mathrm{s} 4.2 .8 \mathrm{~m} / \mathrm{s}\left[\mathrm{N} 58^{\circ} \mathrm{W}\right] 5.0 .29 \mathrm{~m} / \mathrm{s}\left[\mathrm{W} 21^{\circ} \mathrm{N}\right] 6$. north car $\mathrm{V}=35.3 \mathrm{~km} / \mathrm{hr}[\mathrm{N}]$, east car $\mathrm{V}=56.5 \mathrm{~km} / \mathrm{hr}[\mathrm{E}]$

