Conservation of Momentum

1. A 5000 kg boxcar moving at $5.2 \mathrm{~m} / \mathrm{s}$ on a level, frictionless track runs into a stationary 8000 kg tank car. If they hook together in the collision, how fast will they be moving afterwards?
2. A 75 kg girl running at $3.0 \mathrm{~m} / \mathrm{s}$ jumps onto a sled that has a mass of 10 kg and that is already moving in the same direction as the girl, at $2.0 \mathrm{~m} / \mathrm{s}$. What will be the final velocity of the girl and the sled assuming that the sled is on level snow and that there is no friction?
3. A 100 g ball moving at a constant velocity of $200 \mathrm{~cm} / \mathrm{s}$ strikes a 400 g ball that is at rest. After the collision, the first ball rebounds straight back at $120 \mathrm{~cm} / \mathrm{s}$. Calculate the final velocity of the second ball.
4. A 25 kg object moving with a velocity of $3.0 \mathrm{~m} / \mathrm{s}$ to the right collides with a 15 kg object moving to the left at $6.0 \mathrm{~m} / \mathrm{s}$. Find the velocity of the 25 kg object after the collision, if the 15 kg object (a) continues to move to the left but only at $0.30 \mathrm{~m} / \mathrm{s}$, (b) rebounds to the right at $0.45 \mathrm{~m} / \mathrm{s}$. and (c) sticks together with the 25 kg object.
5. A 1.5 kg wooden trolley on wheels is stationary on a horizontal, frictionless track. What will be the final velocity of the trolley if a bullet of mass 2.0 g is fired into it with a horizontal velocity of $300 \mathrm{~m} / \mathrm{s}$ along the direction of the track? (the bullet remains embedded in the trolley, although its mass is really negligible).
6. An experimental rocket sled on a level frictionless track has a mass of $1.4 \times 10^{4} \mathrm{~kg}$. For propulsion, it expels gases from its' rocket engines at a rate of $10 \mathrm{~kg} / \mathrm{s}$ and at an exhaust speed of $2.5 \times 10^{4} \mathrm{~m} / \mathrm{s}$ relative to the rocket. For how many seconds must the engines burn in order that the sled acquire a velocity of $50 \mathrm{~m} / \mathrm{s}$ starting from rest? (You may ignore the small decrease in mass of the sled and the small speed of the rocket
 compared to the exhaust gas).

Hint : Start out by using the Impulse=Change in Momentum equation, to figure out how much force the gas is exerting. Apply this force to the mass of the rocket sled.

[^0] $0.87 \mathrm{~m} / \mathrm{s}[$ left], $4 \mathrm{c} .0 .38 \mathrm{~m} / \mathrm{s}[$ left $5.0 .40 \mathrm{~m} / \mathrm{s}[f o r w a r d], 6.2 .8 \mathrm{~s}$

[^0]: Answers: 1. $2.0 \mathrm{~m} / \mathrm{s}[f o r w a r d], 2.2 .9 \mathrm{~m} / \mathrm{s}[f o r w a r d], 3.80 \mathrm{~cm} / \mathrm{s}[f o r w a r d], 4 \mathrm{a} .0 .42 \mathrm{~m} / \mathrm{s}[\mathrm{left}], 4 \mathrm{~b}$.

