Momentum and Impulse

1. Calculate the momentum of each of the following objects:
a. a 0.50 kg ball thrown up with a velocity of $30 \mathrm{~m} / \mathrm{s}$.
b. a 2000 kg railway car moving south at $10 \mathrm{~m} / \mathrm{s}$
c. the Earth, a mass of $5.97 \times 10^{24} \mathrm{~kg}$, moving at $2.98 \times 10^{4} \mathrm{~m} / \mathrm{s}$.
2. The momentum of a 7.3 kg shot is $22 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ [forward]. What is its' velocity?
3. A bullet travelling at $900 \mathrm{~m} / \mathrm{s}$ has a momentum of $4.5 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$. Find its mass.
4. Find the impulse exerted when a force of force of $25 \mathrm{~N}[\mathrm{E}]$ is exerted on a cart for 3.2 s . What would the resulting momentum be if the cart had an initial momentum of $100 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ [E].
5. Find the impulse on a hockey puck by a hockey stick exerting a force of 120 N [forward] for 0.5 s . What is the resultant momentum of the puck if the initial momentum was $20 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ [backwards]?
6. Find the impulse exerted on a billiard ball bouncing off a cushion, if the force-time profile of the collision is as shown to the right.
7. Find the impulse exerted during a collision between a toy car and a wall, if the force time graph is as shown to the right.

8. A golf club exerts an average force of $7.2 \times 10^{3} \mathrm{~N}$ of a golf ball for the $5.0 \times 10^{-4} \mathrm{~s}$ they are in contact.
a. Calculate the impulse of the impact on the ball.
b. If the mass of the ball is 45 g , what velocity will it have as it leaves the club face (assuming it is not moving when the club initially hits it).
Answers : 1. a. $15 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\left[\right.$ up], b. $2.0 \times 10^{4} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}\left[\right.$ south]. c. $1.80 \times 10^{29} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}[$ forward],
9. $3.0 \mathrm{~m} / \mathrm{s}$ [forward], $3.5 .0 \times 10^{-3} \mathrm{~kg}, 4$. impulse $=80 \mathrm{~N} \cdot \mathrm{~s}[\mathrm{E}]$, final momentum $=180 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}[\mathrm{E}]$,
10. J=60N $\cdot \mathrm{s}[f 0 r w a r d]$, p=40kg $\cdot \mathrm{m} / \mathrm{s}[f o r w a r d], 6.1 .0 \mathrm{~N} \cdot \mathrm{~s}[f o r w a r d], 7.0 .85 \mathrm{~N} \cdot \mathrm{~s}[f \circ r w a r d]$,
8.a. $3.6 \mathrm{~N} \cdot \mathrm{~s}[$ forward], b. $80 \mathrm{~m} / \mathrm{s}[$ forward].
