<u>Acids</u>

Acids are compounds that produce hydrogen ions (H¹⁺) when dissolved in water For example when hydrochloric acid is dissolved in water it forms H¹⁺ and Cl¹⁻ ions

Remember dissolving in water is a physical change. The higher the concentration of the H¹⁺ ions the more acidic is the solution

Some common examples of acids include:

Acetic acid	Vinegar	Hydrochloric acid	Stomach acid
Citric acid	In citrus fruits	Carbonic acid	<mark>In soft drinks</mark>
Salicylic acid	<mark>Aspirin</mark>	Sulfuric acid	Battery acid

General Properties of Acids

1	Water soluble
2	Sour in taste
3	Corrosive to skin, fabric and paper
4	Conducts electricity
5	Reacts with metal
6	Turns blue litmus paper red

Naming Acids Binary acids: acids having hydrogen and one non-metal Eg: HCl

Step 1: Add the prefix hydro to the beginning Step 2: Write the name of the non-metal Step 3: Change the ending to ic acid HCI - hydrochloric acid

- HBr hydrobromic acid
- HI hydroiodic acid
- H₂S hydrosulfuric acid

Oxy acids: acids having hydrogen and an oxygen containing polyatomic ion Eg: HCLO₃

Step 1: Write the name of the polyatomic ion Step 2: change the ending of the name

If the name ends in -ate Change the ending to -ic acid

If the name ends in -ite Change the ending to -ous acid

HCIO₃ Chloric acid

- H₂SO₄ Sulfuric acid
- HNO₂ Nitrous acid
- H₃PO₄ Phosphoric acid

<u>Bases</u>

Bases are compounds that produce hydroxide ions (OH¹⁻) when dissolved in water For example when sodium hydroxide is dissolved in water it forms Na¹⁺ and OH¹⁻ ions

NaOH \rightarrow Na¹⁺ (aq) + OH¹⁻ (aq)

The higher the concentration of the OH¹⁻ ions the more basic the solution is.

Some common examples of bases include

sodium hydrogen carbonate	Baking soda	aluminum oxide	In antacids
potassium sulfite	Food preservative	sodium hydroxide	In drain & oven cleaners
ammonia	cleaners	potash and lye (KOH and NaOH)	<mark>In soap</mark>

General Properties of Bases

1	Water soluble
2	Bitter in taste
3	Corrosive to skin, fabric and paper
4	Conducts electricity
5	Feels slippery
6	Turns red litmus paper blue

Neutralization Reactions

A neutralization reaction is a type of double displacment reaction.

A chemical reaction in which an acid and base react with each other to form water and salt is called a neutralization reaction.

A salt is any ionic compound that is created from a neutralization reaction -- (not necessarily NaCl)

Examples:

hydrochloric acid + sodium hydroxide \rightarrow sodium chloride + water HCl + NaOH \rightarrow NaCl + H₂O

sulfuric acid + magnesium hydroxide \rightarrow magnesium sulfate + water $H_2SO_4 + Mg(OH)_2 \rightarrow MgSO_4 + 2H_2O$

nitrous acid + calcium hydroxide \rightarrow calcium nitrite + water $2HNO_2$ + Ca(OH)₂ \rightarrow Ca(NO₂)₂ + 2H₂O

Practice Writing Chemical Equations for Neutralization Reactions

Write word equations and balanced chemical equations for the following neutralization reactions: 1. Aluminum hydroxide reacts with nitric acid.

nitric acid + aluminum hydroxide \rightarrow aluminum nitrate + water 3HNO₃ + Al(OH)₃ \rightarrow Al(NO₃)₃ + 3H₂O

- Aqueous hydrofluoric acid reacts with potassium hydroxide.
 hydrofluoric acid + potassium hydroxide → potassium fluoride + water
 HF + KOH → KF + H₂O
- 3. Lithium hydroxide reacts with phosphoric acid. phosphoric acid + lithium hydroxide \rightarrow lithium phosphate + water H_3PO_4 + 3LiOH \rightarrow Li₃PO₄ + 3H₂O
- 4. Barium hydroxide reacts with hydroiodic acid.
 hydroiodic acid + barium hydroxide → barium iodide + water
 HI + Ba(OH)₂ → Bal₂ + H₂O

pH of some common household materials

The pH scale is <u>logarithmic</u> and as a result each whole pH value below 7 is <u>10 times</u> more acidic than the next higher value

For example, pH 4 is <u>10 times more acidic</u> than pH 5 and <u>100 times more</u> acidic than pH 6

The same holds true for pH values above 7, each of which is <u>10 times more alkaline (basic)</u> than the next lower whole value

pН

For example, pH 10 is 10 times more basic than pH 9 and 100 times more basic than pH 8

- A pH of 3 is <u>10 times more acidic</u> than a pH of 4
- A pH of 3 is <u>100 times more acidic</u> than a pH of 5
- A pH of 11 is <u>1000 times more basic</u> than a pH of 8
- A pH of 10 is <u>100 times less basic</u> than a pH of 12

<u>pH Indicators</u>

Determining the pH of a Solution

Litmus Paper

	Acid	Neutral	Base
Red Litmus Paper	stays red	stays red	turns blue
Blue Litmus Paper	turns red	stays blue	stays blue

Other pH Indicators

Indicator	pH Range in which colour change occurs	Colour changes as pH increases
Methyl Orange	3.2 - 4.4	from red to yellow
Methyl Red	4.8 - 6.0	from red to yellow
Bromothymol Blue	6.0 - 7.6	from yellow to blue
Phenophthalein	8.2 – 10.0	from clear (colourless) to pink
Indigo Carmine	11.2 – 13.0	from blue to yellow

See page 233 in your text