Acids and Bases

They are everywhere - In your Food - In your House - And even in you

Acids

Acids are compounds that produce hydrogen ions $\left(\mathrm{H}^{1+}\right)$ when dissolved in water
For example when hydrochloric acid is dissolved in water it forms H^{1+} and Cl^{1-} ions
Remember dissolving in water is a physical change.
The higher the concentration of the H^{1+} ions the more acidic is the solution
Some common examples of acids include:

Acetic acid	Vinegar	Hydrochloric acid	Stomach acid
Citric acid	In citrus fruits	Carbonic acid	In soft drinks
Salicylic acid	Aspirin	Sulfuric acid	Battery acid

General Properties of Acids

1	Water soluble
2	Sour in taste
3	Corrosive to skin, fabric and paper
4	Conducts electricity
5	Reacts with metal
6	Turns blue litmus paper red

Naming Acids
Binary acids: acids having hydrogen and one non-metal
Eg: HCl

Step 1: Add the prefix hydro to the beginning
Step 2: Write the name of the non-metal
Step 3: Change the ending to ic acid
HCl - hydrochloric acid
HBr - hydrobromic acid
HI - hydroiodic acid
$\mathrm{H}_{2} \mathrm{~S}$ - hydrosulfuric acid
Oxy acids: acids having hydrogen and an oxygen containing polyatomic ion Eg: HCLO_{3}

Step 1: Write the name of the polyatomic ion
Step 2: change the ending of the name
If the name ends in -ate Change the ending to -ic acid
If the name ends in -ite Change the ending to -ous acid
HClO_{3} Chloric acid
$\mathrm{H}_{2} \mathrm{SO}_{4}$ Sulfuric acid
HNO_{2} Nitrous acid
$\mathrm{H}_{3} \mathrm{PO}_{4}$ Phosphoric acid

Bases

Bases are compounds that produce hydroxide ions $\left(\mathrm{OH}^{1-}\right)$ when dissolved in water For example when sodium hydroxide is dissolved in water it forms Na^{1+} and OH^{1-} ions
$\mathrm{NaOH} \rightarrow \mathrm{Na}^{1+}{ }_{(\mathrm{aq})}+\mathrm{OH}^{1-}{ }_{(\mathrm{aq})}$
The higher the concentration of the OH^{1-} ions the more basic the solution is.

Some common examples of bases include

sodium hydrogen carbonate	Baking soda	aluminum oxide	In antacids
potassium sulfite	Food preservative	sodium hydroxide	In drain \& oven cleaners
ammonia	cleaners	potash and lye (KOH and NaOH$)$	In soap

General Properties of Bases

1	Water soluble
2	Bitter in taste
3	Corrosive to skin, fabric and paper
4	Conducts electricity
5	Feels slippery
6	Turns red litmus paper blue

Neutralization Reactions

A neutralization reaction is a type of double displacment reaction.
A chemical reaction in which an acid and base react with each other to form water and salt is called a neutralization reaction.
***A salt is any ionic compound that is created from a neutralization reaction -- (not necessarily $\mathrm{NaCl})^{* * *}$

HA	+BOH	$\rightarrow \mathrm{BA}$	+
H 2 O			
Acid	+	Base	\rightarrow
Salt	+	Water	

Examples:

hydrochloric acid + sodium hydroxide \rightarrow sodium chloride + water $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
sulfuric acid + magnesium hydroxide \rightarrow magnesium sulfate + water
$\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
nitrous acid + calcium hydroxide \rightarrow calcium nitrite + water
$2 \mathrm{HNO}_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Practice Writing Chemical Equations for Neutralization Reactions

Write word equations and balanced chemical equations for the following neutralization reactions:

1. Aluminum hydroxide reacts with nitric acid.
nitric acid + aluminum hydroxide \rightarrow aluminum nitrate + water
$3 \mathrm{HNO}_{3}+\mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O}$
2. Aqueous hydrofluoric acid reacts with potassium hydroxide.
hydrofluoric acid + potassium hydroxide \rightarrow potassium fluoride + water $\mathrm{HF}+\mathrm{KOH} \rightarrow \mathrm{KF}+\mathrm{H}_{2} \mathrm{O}$
3. Lithium hydroxide reacts with phosphoric acid.
phosphoric acid + lithium hydroxide \rightarrow lithium phosphate + water
$\mathrm{H}_{3} \mathrm{PO}_{4}+3 \mathrm{LiOH} \rightarrow \mathrm{Li}_{3} \mathrm{PO}_{4}+3 \mathrm{H}_{2} \mathrm{O}$
4. Barium hydroxide reacts with hydroiodic acid.
hydroiodic acid + barium hydroxide \rightarrow barium iodide + water
$\mathrm{HI}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{BaI}_{2}+\mathrm{H}_{2} \mathrm{O}$

The term pH was first used in _1909_ by _Soren Peter Lauritz Sorensen_
He did not mention what the little p stood for, obviously H was for _hydrogen_
Today the accepted full form is _power of hydrogen_
pH is a _numerical scale_ that ranges from $_0$ to 14
The pH scale measures how _acidic or basic_a substance is.
A pH of $_7$ is neutral_

pH of some common household materials

The pH scale is _logarithmic_and as a result each whole pH value below 7 is _10 times_more acidic than the next higher value

For example, pH 4 is _10 times more acidic_than pH 5 and _100 times more_ acidic than pH 6
The same holds true for pH values above 7, each of which is _10 times more alkaline (basic)_than the next lower whole value

For example, pH 10 is 10 times more basic than pH 9 and 100 times more basic than pH 8 A pH of 3 is _10 times more acidic_ than a pH of 4

A pH of 3 is _ 100 times more acidic_ than a pH of 5
A pH of 11 is _1000 times more basic_ than a pH of 8
A pH of 10 is _ 100 times less basic_ than a pH of 12

pH Indicators

Determining the pH of a Solution

Litmus Paper

	Acid	Neutral	Base
Red Litmus Paper	stays red	stays red	turns blue
Blue Litmus Paper	turns red	stays blue	stays blue

Other pH Indicators

Indicator	pH Range in which colour change occurs	Colour changes as pH increases
Methyl Orange	$3.2-4.4$	from red to yellow
Methyl Red	$4.8-6.0$	from red to yellow
Bromothymol Blue	$6.0-7.6$	from yellow to blue
Phenophthalein	$8.2-10.0$	from clear (colourless) to pink
Indigo Carmine	$11.2-13.0$	from blue to yellow

[^0]
[^0]: See page 233 in your text

