SNC 2DI : Unit 3 Optics

OPTICS REVIEW: Important things to remember:

1. Properties of light:

Light is an Electromagnetic Wave: light travels in a straight line Methods of producing light
Colour Theory: Additive and Subtractive Colours
Law of Reflection: 1. the incident ray, the reflected ray and the normal are on the same plane
2. angle of incidence $=$ angle of reflection

- Index of refraction n (ratio of speed of light in a vacuum to speed of light in a medium) $\boldsymbol{n}=\frac{\boldsymbol{c}}{\boldsymbol{v}}$
- Critical angle: finding the value of i° such that $R^{\circ}=90$
- Total internal reflection occurs when $i^{\circ}>$ critical angle and when $n_{1}>n_{2}$ (if that is the case, it will follow only Laws of reflection)

2. Mirrors deal with reflection of light

3 rays to remember: 1. Rays going parallel to principle axis at mirror, reflect through F
2. Rays going through F, reflect parallel to principle axis
3. Rays hitting the vertex, reflect back at the same angle
$F=1 / 2 C$ (Focal length is $1 / 2$ the radius of Curvature)
Concave (converging) mirrors:
5 cases (1 no images, 3 real and inverted, 1 virtual, upright \& bigger)
Convex (diverging) mirrors: only 1 case, which is a virtual, smaller, upright image

3. Lenses deal with refraction of light

3 rays to remember: \quad. Rays going parallel to principle axis, refract through F
2. Rays going through centre of lens, goes straight through (doesn't bend)
3. Rays going through the focal point, refract parallel to principle axis

Converging lenses (at least one convex surface)

5 cases (1 no images, 3 real and inverted, 1 virtual, upright \& bigger)
Diverging lenses (at least one concave surface)
1 case = a virtual, smaller, upright image

4. Human Eye

Imaging in the human eye, key parts of the eye.
What is normal vision (20/20)

Visual Impairments:

Myopia (nearsighted, you can see close, but not far, focus point is in eye): fix with concave lenses
Hyperopia (farsighted, you can see far, but no close, focus point is in back of eye): fix with convex lenses
Presbyopia (due to old age, muscles get weak and do not adjust eye ball)
Astigmatism (due to oval shaped cornea instead of a spherical cornea)

5. Mirror/Lens Calculations

$$
\frac{1}{f}=\frac{1}{d_{i}}+\frac{1}{d_{o}}
$$

$$
m=\frac{h_{i}}{h_{o}}=-\frac{d_{i}}{d_{o}}
$$

- $\quad+f=$ converging mirrors/lenses = concave mirrors \& convex lenses
- $-f=$ diverging mirrors = convex mirrors
- $+d_{i}=$ real image
- $\quad d_{i}=$ virtual image, you cannot see virtual images on a white screen!!
- $+h_{1}=$ upright image
- $-h_{i}=$ inverted image
- $|m|>1=$ bigger image
- $|\mathrm{m}|<1=$ smaller image

Textbook Practice Questions

- Text Book - Unit 4 Optics, starting on page 399
- Page 427, \#1-4, (concave mirrors)
- Page 436 \#1-7, (convex mirrors)
- Page 455 \#1-3, (refractive index)
- Page 500 \#1-4, (converging lenses)
answers can be found on page 571

Google Classroom Notes:

Note 1 : The Nature of Light
Note 2 : Reflection
Note 3 : Locating Images in Plane Mirrors
Note 4 : Curved Mirrors
Note 5 : Concave Mirrors
Note 6 : Convex Mirrors
Note 7 : The Mirror Equations
Note 8 : Refraction (the bending of light)
Note 9 : Lenses
Note 10 : The Human Eye

