SNC 2DI: Unit 3 Optics

# **OPTICS REVIEW:** Important things to remember:

# 1. Properties of light:

Light is an Electromagnetic Wave: light travels in a straight line

**Methods of producing light** 

Colour Theory: Additive and Subtractive Colours

**Law of Reflection:** 1. the incident ray, the reflected ray and the normal are on the same plane

2. angle of incidence = angle of reflection

• Index of refraction n (ratio of speed of light in a vacuum to speed of light in a medium)  $n = \frac{c}{v}$ 

• Critical angle: finding the value of  $i^{\circ}$  such that  $R^{\circ} = 90$ 

• Total internal reflection occurs when  $i^{\circ} > critical$  angle and when  $n_1 > n_2$  (if that is the case, it will follow only Laws of reflection)

# 2. Mirrors deal with reflection of light

3 rays to remember: 1. Rays going parallel to principle axis at mirror, **reflect** through F

2. Rays going through F, reflect parallel to principle axis

3. Rays hitting the vertex, **reflect** back at the same angle

 $F = \frac{1}{2} C$  (Focal length is  $\frac{1}{2}$  the radius of Curvature)

# Concave (converging) mirrors:

5 cases (1 no images, 3 real and inverted, 1 virtual, upright & bigger)

Convex (diverging) mirrors: only 1 case, which is a virtual, smaller, upright image

#### 3. Lenses deal with refraction of light

3 rays to remember: 1. Rays going parallel to principle axis, **refract** through F

2. Rays going through centre of lens, **goes** straight through (doesn't bend)

3. Rays going through the focal point, refract parallel to principle axis

### Converging lenses (at least one convex surface)

5 cases (1 no images, 3 real and inverted, 1 virtual, upright & bigger)

#### Diverging lenses (at least one concave surface)

1 case = a virtual, smaller, upright image

### 4. Human Eye

Imaging in the human eye, key parts of the eye. What is normal vision (20/20)

### **Visual Impairments:**

**Myopia** (nearsighted, you can see close, but not far, focus point is in eye): fix with concave lenses **Hyperopia** (farsighted, you can see far, but no close, focus point is in back of eye): fix with convex lenses **Presbyopia** (due to old age, muscles get weak and do not adjust eye ball)

**Astigmatism** (due to oval shaped cornea instead of a spherical cornea)

### 5. Mirror/Lens Calculations

$$rac{1}{f}=rac{1}{d_i}+rac{1}{d_o} \hspace{1.5cm} m=rac{h_i}{h_o}=-rac{d_i}{d_o}$$

- + f = converging mirrors/lenses = concave mirrors & convex lenses
- - f = diverging mirrors = convex mirrors
- $+d_i$  = real image
- - di= virtual image, you cannot see virtual images on a white screen!!
- +*h*= upright image
- -h<sub>i</sub> = inverted image
- |m| > 1 = bigger image
- |m| < 1 = smaller image

### **Textbook Practice Questions**

- Text Book Unit 4 Optics, starting on page 399
  - o Page 427, #1-4, (concave mirrors)
  - o Page 436 #1-7, (convex mirrors)
  - o Page 455 #1-3, (refractive index)
  - Page 500 #1-4, (converging lenses)

answers can be found on page 571

# Google Classroom Notes:

Note 1: The Nature of Light

Note 2 : Reflection

Note 3 : Locating Images in Plane Mirrors

Note 4: Curved Mirrors

Note 5: Concave Mirrors

Note 6: Convex Mirrors

Note 7: The Mirror Equations

Note 8 : Refraction (the bending of light)

Note 9 : Lenses

Note 10: The Human Eye