Unit 3 : Energy Work \& Power Review

Key Topics

Work

Mechanical Energy

Power

Thermal Energy

Nuclear Energy

Efficiency

Word Problems

Work and Mechanical Energy

Example : Calculate the energy required to lift a 505 kg roller coaster to the top of a 89 m hill (assuming no friction). What would the kinetic energy be at the bottom of the first hill if the drop was 75 m (again assuming no friction)?

Power

Example : If it took 1.5 minutes to get to the top of the hill, what power was used to move the coaster to the top?

Efficiency

Example : If the actual energy used to get to the top of the hill was $5.0 \times 10^{5} \mathrm{~J}$ (due to losses due to friction), calculate the efficiency of the coaster lift mechanism.

Thermal Energy

Example : If 3.0 kg of methyl alcohol at $50^{\circ} \mathrm{C}$ is added to 2.0 kg of water at $20^{\circ} \mathrm{C}$, what is the equilibrium temperature (methyl alcohol $\mathrm{c}=2,460 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$, water $\mathrm{c}=4,180 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$)? Which substance gained or lost the most energy?

Other stuff to know ©....

Convert from kWh to J \qquad
Convert from g to kg \qquad
Freezing and Boiling Points of Water \qquad density of water \qquad Units (MKS) \qquad
Review Mechanical Energy Quiz

Practice Problems

See back of this page and the following text book problems : page $186 \# 4,8,9,11,12,18,25,27,28,29$
\#1. A student uses a force of 10.0 N to push her physics textbook a distance of 0.50 m across a table. Calculate the amount of work she does on the book.
\#2. A wrestler lifts his opponent of mass 110 kg to a height of 2.8 m above the floor of the wrestling ring. How much work did the wrestler do on his opponent?
\#3. A child pulls his wagon a distance of 15 m across the garden while applying a force of 160 N on the wagon's handle. How much work did the child do on the wagon?
\#4. What is the kinetic energy of a 1000 kg car travelling at $25 \mathrm{~m} / \mathrm{s}$ (assume 2 sig digits)?
\#5. A man does 50 J of work to push a 3.0 kg shopping cart out of his way. If the cart started from rest, what was its speed immediately after this push? (assume there is no friction and that there are 2 sig digits)
\#6. A 65 kg diver is standing on a diving platform 10.0 m above the water below. a. What is the gravitational potential energy of the diver with respect to the water's surface?
b. What is her speed just as she strikes the water?
\#7. A student pours 1.0 kg of water at $7^{\circ} \mathrm{C}$ into a kettle. Calculate the amount of heat energy needed to bring this water to a boil. The specific heat capacity for water is $4180 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$.
\#8. A block made of an unknown substance has a mass of 1.5 kg and a temperature of $15^{\circ} \mathrm{C}$. When 2.6 $\times 10^{4} \mathrm{~J}$ of heat is added to the block, its temperature rises to $90^{\circ} \mathrm{C}$. Calculate the specific heat capacity of the unknown substance.
\#9. Calculate the amount of heat energy required to melt a 10.0 kg block of ice at $0^{\circ} \mathrm{C}$ into liquid water at $0^{\circ} \mathrm{C}$. The latent heat of fusion for water is $3.34 \times 10^{5} \mathrm{~J} / \mathrm{kg}$.
\#10. What is the energy required to raise the temperature of 275 g of ice at $-6.0^{\circ} \mathrm{C}$ to water at $78^{\circ} \mathrm{C}$. The specific heat capacity of ice is $2100 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$, specific heat capacity of water is $4180 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$, latent heat of fusion of water is $3.34 \times 10^{5} \mathrm{~J} / \mathrm{kg}$, latent heat of vaporization of water is $2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$.
\#11. An elevator motor lifts the elevator full of passengers a height of 12 m in 30 s . If the mass of the elevator and passengers is 1000 kg , what is the power developed by the motor (assume 2 sig digs)?
\#12 What is the equilibrium temperature when 125 grams of silver at $97^{\circ} \mathrm{C}$ are added to 2.5 litres of water at $21^{\circ} \mathrm{C}$? The specific heat capacity of water is $4180 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$ and the specific heat capacity of silver is $240 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$.
\#13. The efficiency of an incandescent light bulb is only 4.0%. Calculate the amount of electric energy that must be input to the bulb in order to get 100 J of light energy from the bulb.

Answers:

1. $W=5.0 \mathrm{~J}, \mathbf{2} . W=3.0 \times 10^{3} \mathrm{~J}$, 3. $W=2.4 \times 10^{3} \mathrm{~J}, 4 . E \mathrm{k}=3.1 \times 10^{5} \mathrm{~J}, \mathbf{5} . v_{2}=5.8 \mathrm{~m} / \mathrm{s}$

6a. $E \mathrm{p}=6.4 \times 10^{3} \mathrm{~J}, \mathbf{6 a} . v=14 \mathrm{~m} / \mathrm{s}, 7 . Q=3.9 \times 10^{5} \mathrm{~J}, 8 . c=231 \mathrm{~J} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}, 9 . Q=3.34 \times 10^{6} \mathrm{~J}$,
10. $Q=1.9 \times 10^{5} \mathrm{~J}, 11 . P=3900 \mathrm{~W}, 12 . T=21.2^{\circ} \mathrm{C}, \mathbf{1 3} . E$ in $=2500 \mathrm{~J}$

