Date	:							
------	---	--	--	--	--	--	--	--

SPU3UI Unit 2 : DYNAMICS

Newton's Three Laws

Newton's First	<u>Law : Inertia</u>						
Things like to _ If you throw a _	in space,	it will just k	eep		 at the		
Scientific Wordi	ng:						
			is or				
n		s an	on a	n object, it v	von't		
Newton's Seco	ond Law : Acce	<u>leration</u>					
			d to of the				
Theand	is	to the	to t	he	of the		
Newton's seco	nd law as a for	mula:					
F =	force =			_			
	tion —		_				
Newton's Third	d Law : Equal a	nd Opposit	e Forces				
For everyopposite in		is a	force equa	al in	but		
	direction.	on each othe	er are always equ	al in	but		

Example of Newton's Second Law – stopping suddenly in a c

Example 1 (no air bag, no seatbelt) – What is the force applied to a person with mass
of 70kg if they are in a car accident and stop suddenly from a velocity of 50km/hr in .009
seconds?

Example 2 (with air bag and seat belt) – What would be the force if the person was wearing a seatbelt and the impact was padded by an air bag and the stop took 8 times longer?

Example 3 (force of gravity) – What is the force of gravity on the surface of the earth on a person with mass of 70kg (recall – the acceleration due to gravity is 9.8 m/s²).

Example of Newton's Third Law - acceleration of the earth (can this happen?)

Assuming the acceleration due to gravity is 9.8 m/s². calculate the force of gravity on a 70 kg person as they jump down from a chair.

What is the force that the person exerts back on the earth?

If the earth weighs 5.97x10²⁴kg, what is the acceleration of the earth?