Unit 2 : Dynamics Summary

Key Topics

Types of Forces found in nature

Free Body Diagrams

Newton's Laws

Law of Universal Gravity

Friction

Word Problems

Newton's Laws

Example : Two people pull with 150 N and 130 N in opposite directions on a 50 kg sled on frictionless ice. What is the sled's acceleration?

Newton's Laws and Kinematics

Example : A 25 kg sled that is originally moving northwards at $15 \mathrm{~m} / \mathrm{s}$ is acted on by a net force ($\mathrm{F}_{\text {net }}$) of 113 N [South]. How far will the sled travel before it stops?

Universal Gravity

Example : Calculate the force of gravity on a 2000 kg satellite that is in an orbit $30,000 \mathrm{~km}$ above the surface of the earth (the radius of the earth is $6.38 \times 10^{6} \mathrm{~m}$, and the mass is $5.97 \times 10^{24} \mathrm{~kg}$).

Friction

Example : A 1,500 kg car is moving along a road when it starts to coast to a stop. If the coefficient of kinetic friction between the tire and the road is 1.02 , what will the acceleration of the car be? How long will it take to stop if its initial velocity is $18 \mathrm{~m} / \mathrm{s}$?

Other stuff to know ©
Acceleration due to gravity = \qquad .
Convert from cm to m and km to m \qquad .
Difference between mass and weight \qquad .
Convert from g to kg \qquad .
Review Newton's Laws Quiz (on-line)

Practice Problems

Textbook: page 114 \#13, 14b, 20, 21, 23, 24, 25, 26, 27a,

