Practice Problems Type 1:Vertical Launch

1. A cannon shoots a 10 kg cannon ball straight up at $49 \mathrm{~m} / \mathrm{s}$.
a. find the maximum height it reaches, does the mass of the cannon ball affect how high the ball soars?

[120m]

b. find the time it takes to return to the ground. [10s]
c. What is the cannon balls velocity when it hits the ground? [$49 \mathrm{~m} / \mathrm{s}$ [down]]

Practice Problems Type 2:Horizontal Launch

2. A cannon ball is fired horizontally with an initial velocity of $49 \mathrm{~m} / \mathrm{s}$ from the top of a 176.4 m cliff.
a. find how long the cannon ball is in the air (i.e. when does it hit the ground) [6.0s]
b. how far from the base of the cliff does the cannon ball land? [290m]
c. what is the velocity of the cannon ball when it hits the ground? [$77 \mathrm{~m} / \mathrm{s}\left[50^{\circ} \mathrm{BH}\right]$]
3. A cannon ball is fired horizontally with an initial velocity of $23 \mathrm{~m} / \mathrm{s}$ from the top of a cliff. If it lands 75 m from the base of the cliff, how tall is the cliff? [52 m]
4. An airplane is flying horizontally at a height of 82 m above the ground when it releases a package of supplies to an earth quake ravaged city. The package travels a horizontal distance of 96 m before landing on the ground. Assuming that there is negligible wind or air resistance, what was the package's (and therefore the plane's)
a. initial velocity with respect to the ground? [$23 \mathrm{~m} / \mathrm{s}$ (horizontally)]
b. final velocity before hitting the ground? [$46 \mathrm{~m} / \mathrm{s}\left[60^{\circ} \mathrm{BH}\right]$]

Practice Problems Type 3 : Angle Launches

\#5.A football player kicks a football so that the angle of elevation is 50° and the initial magnitude of the velocity of the ball is $15 \mathrm{~m} / \mathrm{s}$. Find the following:
a. ball's max height [6.7m]
b. time to reach maximum height [1.2s]
c. overall time the ball is in the air [2.4s]
d. horizontal distance travelled [23m]
e. velocity at impact. [$15 \mathrm{~m} / \mathrm{s}\left[50^{\circ} \mathrm{BH}\right]$]

Practice Problems Type 4 : Angle Launches with Different Launch and Landing Heights

\#6. A hiker is standing on a cliff that is 60.0 m high. He throws a stone with an initial velocity of $21 \mathrm{~m} / \mathrm{s}$ at 35° above the horizontal from the edge of the cliff. How far from the base of the cliff does the stone land? [84 m]
\#7. A helicopter is rising vertically at a uniform velocity of $14.7 \mathrm{~m} / \mathrm{s}$. When it is 196 m from the ground a ball is projected from it with a horizontal velocity of $8.5 \mathrm{~m} / \mathrm{s}$ with respect to the helicopter.
a. when will the ball reach the ground? [8.0s]
b. where will it hit the ground? [68 m]

c. what is the ball's velocity when it hits the ground? [$64 \mathrm{~m} / \mathrm{s}\left[\left[82^{\circ} \mathrm{BH}\right]\right]$
\#8. A golfer hits the golf ball off a tee giving it an initial velocity of $32.6 \mathrm{~m} / \mathrm{s}$ at an angle of 65° with the horizontal. The green where the ball lands is 6.30 m higher than the tee. Find:
a. The time interval during which the golf ball was in the air [5.8s]
b. The horizontal distance it travelled [80 m]
c. The velocity of the ball just before it hit the ground. [$31 \mathrm{~m} / \mathrm{s}\left[63^{\circ} \mathrm{BH}\right]$]

\#9 Standing at the edge of a straight cliff, a hiker throws a rock at a velocity of $28 \mathrm{~m} / \mathrm{s}$ at an angle of 50° above the horizontal. The rock is released at a point that is 75.0 m above the ground below the cliff's edge.
a. Calculate the time it takes for the rock to land on the ground below. [6.7s]
b. How far away from the base of the cliff does the rock land? [120m]
c. Determine the velocity the rock hits the ground with. [$47 \mathrm{~m} / \mathrm{s}\left[68^{\circ} \mathrm{BH}\right]$]

