Practice Quest – Fields (2018-05)

/7 1. Two hydrogen nuclei (recall a hydrogen nuclei consists of one proton) are placed 1µm apart as shown below (1 µm=1x10⁻⁶m):

a. Calculate and compare the electrical and gravitational *forces* between the two hydrogen nuclei. How many <u>times</u> bigger is the electrical force to the gravitational force?

b. If an electron (q=-1.602x10⁻¹⁹C) was place at the centre point between the two protons, what would be the overall force on the electron? What if the electron was place 0.5μ m to the right of m₂, what would be the overall force on the electron?

/6

2. Calculate the vertical displacement of the particle as it moves through the electric field between two charged parallel plates .

Particle : <u>Electron</u>	Distance Between Plates, d= <u>0.20m</u>
Mass = $9.11 \times 10^{-31} \text{kg}$	Length of Plates, L = <u>0.40m</u>
Charge = $\frac{-1.602 \times 10^{-19} \text{C}}{1000}$	Voltage Between Plates, V= <u>20V</u>
Starting Velocity $V_h = 3.90 \times 10^6 \text{ m/s}$	

/6 3. Calculate the length of the plates (i.e. L in the diagram below) required to make the displacement of the electron equal to 4.5 cm given the parameters as outlined below.

Particle : <u>Electron</u>	Distance Between Plates, d= <u>0.20m</u>
Mass = $9.11 \times 10^{-31} \text{kg}$	Length of Plates, L =
Charge = $\frac{-1.602 \times 10^{-19} \text{C}}{1000}$	Voltage Between Plates, V= <u>45.0V</u>
Starting Velocity $V_{\rm b} = 3.9 \times 10^6 {\rm m/s}$	