\qquad

Practice Quest - Fields (2018-05)

1. Two hydrogen nuclei (recall a hydrogen nuclei consists of one proton) are placed $1 \mu \mathrm{~m}$ apart as shown below ($1 \mu \mathrm{~m}=1 \times 10^{-6} \mathrm{~m}$):

a. Calculate and compare the electrical and gravitational forces between the two hydrogen nuclei. How many times bigger is the electrical force to the gravitational force?
b. If an electron ($q=-1.602 \times 10^{-19} \mathrm{C}$) was place at the centre point between the two protons, what would be the overall force on the electron? What if the electron was place $0.5 \mu \mathrm{~m}$ to the right of m_{2}, what would be the overall force on the electron?
2. Calculate the vertical displacement of the particle as it moves through the electric field between two charged parallel plates.

Particle : Electron
Mass $=\underline{9.11 \times 10^{-31}} \mathrm{~kg}$
Charge $=\underline{-1.602 \times 10^{-19} \mathrm{C}}$
Starting Velocity $\mathrm{V}_{\mathrm{h}}=\underline{3.90 \times 10^{6} \mathrm{~m} / \mathrm{s}}$

Distance Between Plates, $\mathrm{d}=\underline{0.20 \mathrm{~m}}$
Length of Plates, $\mathrm{L}=\underline{0.40 \mathrm{~m}}$
Voltage Between Plates, V= $\underline{20 \mathrm{~V}}$
3. Calculate the length of the plates (i.e. L in the diagram below) required to make the displacement of the electron equal to 4.5 cm given the parameters as outlined below.

[^0]Distance Between Plates, $\mathrm{d}=\underline{0.20 \mathrm{~m}}$
Length of Plates, L = \qquad

[^0]: Particle : Electron
 Mass $=\underline{9.11 \times 10^{-31}} \mathrm{~kg}$ Charge $=\underline{-1.602 \times 10^{-19} \mathrm{C}}$
 Starting Velocity $\mathrm{V}_{\mathrm{h}}=3.9 \times 10^{6} \mathrm{~m} / \mathrm{s}$

