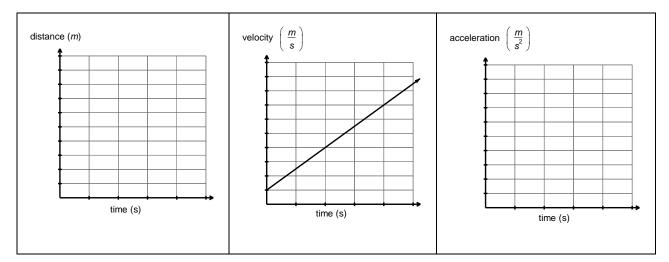
Unit 1 : Kinematics Review

<u> 1. Vectors :</u>


Adding and Subtracting displacement and velocity vectors:

Example : Displacement Vectors	Example : Velocity Vectors
A hiker walks 4.5 km [N], then makes a 45°	A motorboat heads due east at 8.0 m/s relative
turn to the right and walks another 6.4 km	to the water across a river that flows due north
[N45 °E]. What is the magnitude of her	at 5.0 m/s. What is the velocity of the
displacement?	motorboat with respect to the shore?

2. Uniform Motion vs. Accelerated Motion :

All of our problems deal with motion in a	line.			
There are two situations we deal with : constant or constant				
Displacement, velocity and acceleration can be eithe	eror			
First we decide which way is positive.				
A negative displacement just means				
Negative velocity is just speed in the				
Negative acceleration means the velocity is becomin the gas pedal is really the "	" and the brake is really the " " When you push the brake down, your			
velocity (m/s)	velocity (m/s)			
description	description			
(u/s) relation time (s)	(W) time (s)			
description	description			

Graphing (cont'd) :

3. Word Problems (One Object):

Identify the type of problem : ______ or ______.

Identify the given(s) : _____

Identify the required variable (unknown) ----- Select the right formula and solve.

Constant Velocity (Uniform Motion)	Constant Acceleration

4. Word Problems (Two Objects - Chase Problems):

The strategy in these problems is to try to find the _	when the	
for the two objects are the same.		

Set, and solve for	
--------------------	--

Other stuff to know @....

Acceleration due to gravity = _____. Convert from cm to m and km to m _____. Convert from km/hr to m/s (and back) _____

Practice Problems:

Handout: #1-5 (make sure you can do #1 and #2 – #3, #4 and #5 are challenge problems).

Textbook: page 49 # 4., 7a.b., 13-17

page 114, # 2, 14a., 15, 17, 18