Worksheet 1: Synthesis, Decomposition & Combustion

Synthesis: Elements combine to form one compound OR compounds combine to form one large compound.

Decomposition: One compound breaks apart to form elements or smaller compounds.

Combustion: A compound "burns" in a reaction with oxygen.

Balance 1	the reactio 1. The first s							ed.
		_ S _{8(s)}	+		_ O _{2(g)}	\rightarrow		_ SO _{2(s)}
	2. ln 1774 Jo	oseph Priest	ly discov	vered o	xygen b	y decomp	osing the	oxide of mercury
		_ HgO _(l)	\rightarrow		_ O _{2(g)}	+		_ Hg _(l)
	3. Molten table salt is industrially decomposed to produce molten sodium.							
		_ NaCl _(I)	\rightarrow		Na _(I)	+		_ Cl _{2(g)}
	4. Nitrogen f	rom the air r	eacts w	ith hydr	ogen to	produce a	ammonia	fertilizer.
		_ N _{2(g)}	+		H _{2(g)}	\rightarrow		_ NH _{3(g)}
	5. The main	engine on th	ne space	shuttle	is a roc	cket that b	ourns hyd	rogen.
		_ H _{2(g)}	+		_ O _{2(g)}	\rightarrow		_ H ₂ O _(s)
	6. Copper or	re is decomp	osed to	remove	the cop	oper meta	ıl.	
		_ CuO _(l)	\rightarrow		-	+		_
	7. Barbecue c	harcoal underg	joes incon	nplete co	mbustion	that produc	ces deadly o	carbon monoxide.
		_ C _(s)	+		_ O _{2(g)}	\rightarrow		_
	8. Freshly cu	ut lithium rea	icts with	nitroge	n from tl	he air.		
		_ Li _(s)	+		$N_{2(g)}$	\rightarrow		_
	9. A silver sp	ooon or coin			•	d to sulph	nur.	
		_ Ag _(s)	+		_ S _{8(g)}	\rightarrow		_
	10. Molten ly	e (sodium hyd	droxide) i	s decon	nposed ir	ndustrially	into sodiur	m oxide and water.
		_ NaOH _(I)	\rightarrow		-	+		
	11. Aluminu	m dust burns	s explos	ively wit	th oxyge	en to mak	e aluminu	m oxide.

Worksheet 2: Single and Double Displacement

Balance the reactions and state the type of reaction described. 1. Sodium metal reacts vigorously with water giving off a gas.	
$Na_{(s)}$ + $H_2O_{(l)}$ \longrightarrow $H_{2(g)}$ + $NaOH_{(aq)}$	
2. Hydrogen chloride gas is commercially made by reacting table salt with sulfuric acid.	
$\underline{\qquad} NaCl_{(S)} + \underline{\qquad} H_2SO_{4(aq)} \longrightarrow \underline{\qquad} HCl_{(g)} + \underline{\qquad} Na_2SO_4$	(aq)
3. Molten iron produced by the highly exothermic thermite reaction was used to weld railroad rail	3.
$Al_{(S)}$ + $E_2O_{3 (s)}$ $Fe_{(I)}$ + $Al_2O_{4 (s)}$	
4. Aluminum was first produced by Hans Oersted in 1825 by this reaction.	
$\underline{\hspace{1cm}}$ $K(S)$ + $\underline{\hspace{1cm}}$ $AICI_{3 (S)}$ \longrightarrow $\underline{\hspace{1cm}}$ $AI_{(I)}$ + $\underline{\hspace{1cm}}$ $KCI_{(S)}$	
5. Silver ore can be converted to silver sulfate and then reacted with copper to make silver.	
$\underline{\qquad}$ Cu _(s) + $\underline{\qquad}$ Ag ₂ SO _{4(aq)} \longrightarrow	
6. Phosphoric acid is produced by reacting sulfuric acid with bone ash or rock phosphate	€.
$\underline{\qquad}$ Ca ₃ (PO ₄) _{2(aq)} + $\underline{\qquad}$ H ₂ SO _{4(aq)} \longrightarrow	
7. Bromine is commercially produced from magnesium bromide found in sea wat	er.
$\underline{\qquad}$ Cl _{2(g)} + $\underline{\qquad}$ MgBr _{2(aq)} \longrightarrow	
8. Hydrogen sulfide (sour gas) found in Alberta's natural gas will react with lead(I chromate.	l)
$_{}$ H ₂ S _(g) + $_{}$ PbCrO _{4(s)} \longrightarrow	
9. Hydrogen sulfide (sour gas) will react with silverware and silver ornaments.	
$\underline{\qquad}$ $H_2S_{(g)}$ + $\underline{\qquad}$ $Ag_{(s)}$	
10. Sodium phosphate will form a precipitate when it reacts with calcium nitrate.	
\rightarrow	
11. When aluminum reacts with copper(II) sulfate, copper metal forms as one of products.	the