Table 1: Writing Chemical Formula's for a Ternary Compound
Fill in the table with appropriate metal ion, non-metal ion and the chemical formula of the compound.

	Chemical Name	Metal ion (cation)	Polyatomic ion (anion)	Chemical Formula
1	Sodium carbonate	Na^{+1}	$\left(\mathrm{CO}_{3}\right)^{-2}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$
2	Calcium nitrate			
3	Manganese (V) sulfate			
4	Aluminum hydrogen carbonate			
5	Potassium phosphate			
6	Beryllium hydroxide			
7	Gold (I) hydrogen sulfate			
8	Ammonium chloride			
9	Nickel (II) chlorate			
10	Mercury (I) hydroxide			
11	Ammonium nitrite			
12	Tin (IV) sulfite			

Table 2: Naming Ternary Ionic Compounds
Fill in the table with the name of the compound.

	Chemical Formula	Non-metal ion (anion)	Calculations	$\begin{aligned} & \text { Metal } \\ & \text { ion } \\ & \text { (cation) } \end{aligned}$	Chemical Name
1	AuClO_{3}	$\left(\mathrm{ClO}_{3}\right)^{-1}$	$1(1+)=1(1-)$ $\mathrm{Au} \mathrm{ClO}_{3}$	$\mathbf{A u}^{+1}$	gold (I) chlorate
2	$\mathrm{Fe}(\mathrm{OH})_{2}$				
3	CaCO_{3}				
4	$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$				
5	$\mathrm{Li}_{2} \mathrm{HPO}_{4}$				
6	$\mathrm{Be}_{3}\left(\mathrm{PO}_{4}\right)_{2}$				
7	$\mathrm{Cu}\left(\mathrm{HSO}_{4}\right)_{2}$				
8	Sn(CN) 4				
9	$\mathrm{Na}_{2} \mathrm{SO}_{4}$				
10	$\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$				
11	$\mathrm{W}\left(\mathrm{SO}_{4}\right)_{2}$				
12	$\mathrm{Zn}\left(\mathrm{HCO}_{3}\right)_{2}$				

Table 3: A Mixture of Binary and Ternary lonic Compounds
Part A: State if the compound is a binary compound (B) or a ternary compound (T). Write the cation, and anion, and the chemical formula for each of the following ionic compounds.

	Chemical Name	B or T	Cation	Anion	Chemical Formula
1	Sodium phosphate		Na^{+1}	$\left(\mathrm{PO}_{4}\right)^{-3}$	$\mathrm{Na}_{3} \mathrm{PO}_{4}$
2	Silver carbonate				
3	Ammonium chlorate				
4	Antimony (III) nitride				
5	Uranium (IV) oxide				
6	Strontium iodide				
7	Magnesium phosphate				
8	Zinc cyanide				
9	Platinum (IV) hydroxide				
10	Lithium nitite				
11	Mercury (I) phosphate				
12	Zirconium hydroxide				

Table 4: Part B: State if the compound is a binary compound (B) or a ternary compound (T). State if the metal cation is regular monovalent (R) or multivalent (M), and write the chemical name for each compound.

	Chemical Formula	B or T	R or M	Chemical name
1	$\mathrm{Mg}_{3} \mathrm{P}_{2}$	B	R	Magnesium phosphide
2	$\mathrm{Fe}_{2} \mathrm{O}_{3}$			
3	$\mathrm{Co}_{2}\left(\mathrm{SO}_{4}\right)_{3}$			
4	$\mathrm{Al}(\mathrm{OH})_{3}$			
5	CaCO_{3}			
6	VCl_{5}			
7	$\mathrm{Mn}\left(\mathrm{CO}_{3}\right)_{2}$			
8	$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$			
9	$\mathrm{Ni}(\mathrm{CN})_{2}$			
10	$\mathrm{K}_{3} \mathrm{As}$			
11	BeSO_{3}			
12	$\mathrm{Sn}\left(\mathrm{ClO}_{3}\right)_{4}$			

