SPH3UI : Exam Review Practice Questions

1. A sprinter in a 100 m dash has a velocity-time profile for the first second of the race as shown to the right:

Determine the sprinters position-time graph (at t=0, .25, .5, .75 and 1.0 secs) and average acceleration

 A Rocket is travelling at 100 m/s when it fires it's engines generating an average acceleration of 2.0 m/s². While accelerating the rocket travels 20 km.

- a. How long does it take for the rocket to travel this 20km?
- b. How fast is the rocket going at the end of this acceleration period?
- 3. The tortoise and hare are having a 300m race. The hare gives the tortoise a 225m headstart and the tortoise travels at a constant velocity of 0.5 m/s.

Assuming the hare accelerates uniformly from rest at 0.2m/s², does the hare pass the tortoise before the finish line and if so where?

- 4. You are attempting to push your car (that has run out of gas) on a flat stretch of road. The coefficient of static friction is 0.80 and coefficient of kinetic friction is 0.60. If the car has a mass of 1500 kg,
 - a. what is the minimum force you must apply to start the car moving?
 - b. what is the amount of force that you must push with to keep it moving?
- Jupiter is the largest planet in the Solar System with a mass of 1.899x10²⁷kg and a radius of 7.149x10⁷m. What would be the force of gravity on a 1 kg object on the surface of Jupiter? Compare this to the force on the same object on the surface of the earth.
- 6. The average mass of the coaster car is 1,000kg (including passengers). Assuming zero kinetic energy at the top of the ride (i.e. not moving) calculate the following:
 - a. If it took 20 seconds to pull the coaster to the top what Power was needed by the motor to lift the coaster?
 - b. What would the speed of the coaster be at point D?

7. Draw a heating diagram and calculate the energy required to melt 2.0kg of ice initially at -30°C and warm it up to 85°C.

The following specifications may help in solving this problem.

c - specific heat content (J/kg °C) (ice)	2,100
L _f - Latent heat of fusion (J/kg)	3.34×10^{5}
c - specific heat content (J/kg °C) (water)	4,180
Lv – Latent heat of vaporization (J/kg)	2.26x10 ⁶
c - specific heat content (J/kg °C) (steam)	2,100

- 8. A monarch butterfly beats her wings at a frequency of 9Hz. If the amplitude of the wings motion is 1.5cm, calculate how far the wings move in one minute.
- 9. A closed ended air column is 120 cm long.
 - a. What are the wavelengths of the first 3 resonant waves?
 - b. If the air temperature is 20°C, what is the frequency of these three waves?
- 10. Characterize the following circuits (find all the missing voltages, currents and overall power used and show the direction of the current(s))

11. Electromagnetism:

- a. State the three main components of an electric motor.
- b. What is the key difference between an electric generator and an electric motor?
- c. Show the direction of the magnetic field for the following current carrying conductors.

Answers:

- 1. t=0s, $\Delta d=0.0m$ t=0.25s, $\Delta d=0.1875m$ t=0.5s, $\Delta d=0.75m$ t=0.75s, $\Delta d=1.6875m$ t=1.0s, $\Delta d=3.0m$ $a=6.0m/s^2$
- 2a. t=100s, b. v₂=300m/s
- 3. the hare wins the race, passes the tortoise at the 250m mark
- 4a. F_{fs} =1.2x10⁴N b. F_{fk} =0.88x10⁴N
- 5. F_g=25N, 2.5x's bigger than on earth
- 6a. P=13.2 kW (13,200 Watts), b. v=11.7m/s
- 7. Q_{tot}=1.5MJ
- 8. 32.4m
- 9. λ_1 =4.8m, λ_2 =1.6m, λ_3 =0.96m, f₁=71.6Hz, f₂=215Hz, f₃=358Hz,
- 10. parallel, I₁=0.09A, I₂=0.045A, I_{tot}=0.135A, V₁=V₂=9.0V, P=1.215W series, I₁=I₂=I_{tot}=0.03A, V₁=3.0V, V₂=6.0V, V_{tot}=9.0V, P=0.27W
- 11a. permanent magnet, battery (source of charge), coil of wire
- 11b. motor uses electricity and magnetism to create motion generator uses motion and magnetism to create electricity
- 11c.

