SPH3U - Solving Energy Problems

Potential Energy + Kinetic Energy = Total Mechanical Energy

$E_{T \text { inital }}=E_{\text {T final }}$

1. A car of mass 1050 kg is travelling at $100 \mathrm{~km} / \mathrm{hr}$. What is its' kinetic energy? [4.05 $\times 10^{5} \mathrm{~J}$]
2. A cyclist and her bike have a combined mass of 80.0 kg , and due to her velocity, she has a kinetic energy of 4.07 KJ . What velocity is she travelling at? [10.1 m/s]
3. A bungee jumper is standing in a tower preparing to jump. The tower is 45 m high, which gives the bungee jumper a potential energy of $33,075 \mathrm{~J}$ relative to the ground. What is his mass? [75kg]
4. A Canadian penny $(2.35 \mathrm{~g})$ is being held over the observation deck on the CN Tower at a height of 450 m above the ground. What is the penny's gravitational potential energy? [10.4J]
5. A ball of mass 3.20 kg is thrown straight up, giving it an initial energy of 48.4J. The point at which it is released will be called "height $=0.00 \mathrm{~m}$."
a. What is the kinetic energy just as the ball is released? [48.4J]
b. What is the potential energy when the height equals 0.0 m ? [0J]
c. What is the ball's initial velocity just as it is released? [$5.5 \mathrm{~m} / \mathrm{s}$]
d. What does 59.0 cm equal when changed to a value in m ? [0.59 m]
e. What is the total energy at a height of 59.0 cm above a height of 0.0 m ? [48.4J]
f. What is the potential energy at a height of 59.0 cm ? [18.5J]
g. What is the kinetic energy at a height of 59.0 cm ? [29.9J]
h. What is the maximum height the ball rises to? [1.54m]
i. What is the kinetic energy at this height? [0J]
j. After reaching this height, the ball will fall straight back down to the point that it started from. As it is falling, is its' kinetic energy increasing or decreasing? [increasing]
k. What is the ball's potential just before it lands? [0J]
l. What is the ball's kinetic energy just before it lands? [48.4J]
m . With what velocity does the ball strike when it lands? [$5.5 \mathrm{~m} / \mathrm{s}$]
n . What happens to the 48.4 J of energy once the ball has landed? [lost to heat (and sound) into the ground]

Challenge Problem

6. An object of mass 3.01 kg is suspended above a pile of firm mud. When released, it drops for 0.904 s and then lands in the mud. The mud exerts a constant force on the mass of 1475 N , which allows the mass to sink down a bit before coming to rest.
How far will the mass sink into the mud? [8.0 cm]
