Mechanical Energy Review Problems

Maximum Velocity / Maximum Height Problems

1. Calculate the velocity an object would hit the ground with if it fell from a height of 1.28 m . [$5 \mathrm{~m} / \mathrm{s}$]
2. Calculate the velocity an object would hit the ground with if it fell from a height of 4.6 m . [$9.5 \mathrm{~m} / \mathrm{s}$]
3. A ball of mass 2.0 kg falls 40 cm . What velocity does it strike the ground with? [$2.8 \mathrm{~m} / \mathrm{s}$]
4. Another bigger ball with mass 4.0 kg also falls 40 cm . What velocity does it hit the ground with? Which ball hits the ground with greater kinetic energy? [$2.8 \mathrm{~m} / \mathrm{s}$, larger ball has higher E_{k}]
5. A ball is thrown straight up with a velocity of $10.8 \mathrm{~m} / \mathrm{s}$. What is its' maximum height? [5.95 m]
6. A ball is thrown straight up with a velocity of $5.24 \mathrm{~m} / \mathrm{s}$. What is its' maximum height? $[1.40 \mathrm{~m}]$
7. A 20 kg rock is launched straight up with an $\mathrm{V}_{\mathrm{i}}=5.24 \mathrm{~m} / \mathrm{s}$. How high up does it go? [1.40m]

Roller Coaster Problems

8. A 501 kg roller coaster is on a frictionless track 36.66 m above the ground. The height of the track at Point B is 20.37 m .
a. Find the potential energy of the coaster at point A. [1.80×10 $\left.{ }^{5} \mathrm{~J}\right]$
b. Find the potential energy at point B. [1.00×105 $]$
c. Determine the kinetic energy of the coaster at B. [8.00×10 $\left.{ }^{4} \mathrm{~J}\right]$
d. Calculate the velocity of the coaster at B. $[17.9 \mathrm{~m} / \mathrm{s}]$
e. Use the difference in height between
 Point A and Point B and the equation from the first part of this assignment to redetermine the velocity at B. [17.9 m/s]
f. Five 75 kg passengers climb into the coaster at and glide down the track to B. What velocity are they going when they are at B ? $[\mathbf{1 7 . 9} \mathbf{~ m} / \mathrm{s}$]
9. This roller coaster has a $2.0 \times 10^{3} \mathrm{~kg}$ cart on a frictionless track 44 m above the ground. The bump at point B is 12 m above the ground.
a. Calculate the velocity of the cart when it gets to point B. $[25 \mathrm{~m} / \mathrm{s}$]
b. Convert your answer in part a. to $\mathrm{km} / \mathrm{hr}$. [$90 \mathrm{~km} / \mathrm{hr}$]
c. Determine the velocity the cart would have when it finally gets down to ground level (in both m / s and $\mathrm{km} / \mathrm{hr}$).

$$
\text { [29 m/s, } 110 \mathrm{~km} / \mathrm{hr}]
$$

