Review Problems : Newton's Laws in 2 Dimensions

1. A tire with mass 20 kg is being pulled by three ropes as shown. If the tire is being dragged along a concrete floor and the coefficient of kinetic friction with the floor is μ_{k} is 0.80 , what is the acceleration of the tire?

2. A 4.0 kg mass is sliding along a level surface at $15 \mathrm{~m} / \mathrm{s}$ and then begins sliding up a ramp that is elevated 28° above the horizontal. (assume the ramp has a slight curve at the bottom that allows the mass to make a smooth transition from the horizontal to the surface of the ramp).

The coefficient of friction between the mass and the ramp is 0.25 . How
 far up the ramp will the mass slide?
3. Solve the distance travelled for a mass sliding up a ramp (as in problem \#2) given the following initial conditions:
a. $V_{1}=12 \mathrm{~m} / \mathrm{s}, \quad \mu_{\mathrm{k}}=0.15$, mass $=10.0 \mathrm{~kg}, \theta=15^{\circ}$
b. $V_{1}=8.0 \mathrm{~m} / \mathrm{s}, \mu_{\mathrm{k}}=0.62$, mass $=22.0 \mathrm{~kg}, \theta=23^{\circ}$
4. Find the critical angle (i.e. the angle when an object would first start sliding) for the following scenarios.
a. $\mu_{s}=0.25$, mass $=10.0 \mathrm{~kg}$,
b. $\mu_{\mathrm{s}}=0.72$, mass $=22.0 \mathrm{~kg}$,

Answers :

1. $\mathrm{a}=7.3 \mathrm{~m} / \mathrm{s}^{2}\left[83.9^{\circ} \mathrm{AH}\right]$
2. $d=16.6 \mathrm{~m}$
3a. $\mathrm{d}=18.1 \mathrm{~m}$
3b. $d=3.4 m$
4a. $\theta=14^{\circ}$
4b. $\theta=36^{\circ}$
