SPH4UI - Unit 1B : Linear Dynamics : Review Problems

1. A 50 kg mass is suspended below an elevator with mass 500 kg . If the elevator and suspended mass are accelerating upwards at $2.0 \mathrm{~m} / \mathrm{s}^{2}$, what is the tension in each cable? (assume 2 significant digits).

2. Three horizontal forces act on a 1.9 kg object as shown below. If the coefficient of kinetic friction with the ground is 0.63 , calculate the acceleration of the object.

3. Two Atwood machines are setup as illustrated to the right. Mass $1(\mathrm{~m} 1)$ is 10 kg and Mass $2(\mathrm{~m} 2)$ is 12 kg . Calculate the overall acceleration and tension in the rope in both situations. (in both cases you can assume zero friction and the pulley is massless)
a.

b.

4. A 65 kg boy and his toboggan (combined mass) are sliding down a snow covered hill ($\mu_{\mathrm{k}}=0.25$). The boy slides down the hill, across a short horizontal section (5 m) and then travels up the other side of the hill before coming to a rest. If the boy starts at rest and 20 m up from the bottom of the hill, how far up the other side of the hill will the boy go before stopping?

Answers:

1. cable $1-\mathrm{F}_{\mathrm{t}}=6.5 \times 10^{3} \mathrm{~N}$, cable $1-\mathrm{F}_{\mathrm{t}}=5.9 \times 10^{2} \mathrm{~N}$
2. $a=9.6 \mathrm{~m} / \mathrm{s}^{2}$ [right]
3a. $a=0.89 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~F}_{\mathrm{t}}=110 \mathrm{~N}$,
b. $a=5.3 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~F}_{\mathrm{t}}=53 \mathrm{~N}$
3. $d=4.1 \mathrm{~m}$ (up the hill)
