Equations from Proportionality Statements... and back

In $y \propto x$, the \propto symbol is replaced by = k to make an equation.

equation ---> proportionality statement

To go from an equation to a proportionality statement, replace all the constants with a proportionality symbol i.e V = kxbecomes $V \propto X$.

Write the proportionality statement in your notes for each of the following equations:

(a)
$$V = \frac{4}{3}\pi r^3$$
; the relationship between V and r (b) $F = \frac{mv^2}{r}$; between F and v (c) same equation as (b); between F and r (d) $F = \frac{Gm_1m_2}{r^2}$; between F and m₁

- (e) same equation as (d); between F and r

 (f) $K = \frac{R^3}{T^2}$; between R and T

 Partionality statement ----> equation

 The statement ----> equation

proportionality statement ----> equation

To go from a <u>proportionality statement</u> to an <u>equation</u>, replace the $\, \infty \,$ symbol with $\, = \, \pmb{k} \,$. Substitute in a set of values and solve for K. Now use the equation to solve other similar cases.

- If $a \propto b^3$ and a = 4 when b = 3.5, what is a when b = 7? 2. a = 37
- If $d \propto at^2$ and a = 2 when t = 4 and d = 16, what will d be when a = 4 and t = 12? d=288
- If $p \propto \frac{q^3}{r^2}$ and p = 400 when q = 5 and r = 3, what will p be when q = 15 and r = 5? D=2,888
- If $E \propto mv^2$ and E = 98 when m = 4 and v = 7, what will E be when m = 10 and v = 42 5. E=8,820

combining the Multiplier Method

a) Determine the proportionality statement that describes the data below using the 6. Multiplier Method. Gd xz (x2 d y)

X	0.2	0.4	0.6	0.8	1
у	200	50	22.2	12.5	8

b) Write an equation relating y and x.

c) If
$$x = 0.55$$
, what would $\frac{1}{x}$ be?

Practice

Determine the proportion for each of the following tables of values.

	A	В
4 .22	2.	100
AXB-	8	200
	50	500
	200	1000

	C	D
sher m	3	120
CAD	6	60
	9	40
a bas l	12	30

	Е	F
-3	2	90
EXF	54	270
	16	180
edi Tar	250	450

	G	H
02×H	6	5
6	12	20
	18	45
	42	245

as rolling	M	N
M3xN-	2	3
Mar	4	24
14179111	6	81
	8	192

A slider that starts from rest and slides down an inclined air track covers the distances d in the times t. Using graphical methods, determine the relationship between d and t.

7 2 7 10 1		T	- 1 OH 8 C 1	- p asny l		-1
t	0	0.8	1.0	1.2	1.4	ax
d		12.8				d=2

3. An experiment is performed to find the relationship between two physical quantities, B and A. The following data is obtained.

A	100	64	49	36	25	16
В	1.99	1.59	: 1.39	1.19	1.00	0.80

Determine the relationship between B and A. $A \propto B^2$ $A = 25B^2$