1. Evaluate. If possible, state exact answers. Otherwise, round to two decimals.
a) $\log _{3}(81)$
b) $\log _{6}(1)$
c) $\log _{5}\left(\frac{1}{125}\right)$
d) $\log (1000)$
e) $\log _{2}(24)-\log _{2}\left(\frac{3}{2}\right) \quad$ f) $\quad \log _{6}(4)+\log _{6}(9)$
g) $\log _{6}\left(\frac{1}{216}\right)$
h) $\log _{2}(1024)$
2. Solve. If possible, state exact answers. Otherwise, round to four decimals.
a) $7(2)^{-x}=5^{2 x+3}$
b) $3(4)^{x}=13^{3 x-1}$
c) $-9 e^{8 x-5}+7=-20$
d) $\log (x)=2 \log (3)+3 \log (2)$
e) $\log _{4}(x+2)-\log _{4}(x-3)=\log _{4}(9)$
f) $6 e^{4 x+3}-5=13$
g) $\log _{4}(x+2)+\log _{4}(x-1)=1$
h) $\log _{3}(8 x+7)+\log _{3}(x+1)=2$
i) $\ln \left(x^{2}-9\right)=1$
j) $e^{x}=5$
k) $\ln (5 x-2)=7$
I) $e^{\frac{x}{3}}=2 e$
3. A plug-in air freshener loses about 4% of its scent every 3 days. Find the number of days until the freshener only has 25% of its original scent. (Round your answer to the nearest day.)
4. The half-life of Cesium-144 is 282 days. How long is it until only 10% remains?
(Round your answer to the nearest day.)
5. A collector comic book, currently worth $\$ 40$, is predicted to grow in value $15 \% /$ a.
a) How much is this book predicted to be worth in 10 years?
b) How long would you have to wait for this book to double in value?
6. On each bounce a ball rises 70% of the height from which it fell. Let us agree that, for all practical purposes, the ball stops bouncing when the height to which it rises is only 0.1% of the height from which it was dropped originally. How many bounces will this take?

Answers:

1. a) 4
b) 0
c) -3
d) 3
e) 4
f) 2
g) -3
h) 10
2. a) -0.7368
b) 0.5807
c) 0.7623
d) 72
e) $\frac{29}{8}$
f) -.4753
g) 2
h) $\frac{1}{8}$
i) $\pm \sqrt{e+9}$
j) $\ln (5)$
k) $\frac{e^{7}+2}{5}$
l) $3 \ln (2 e)$
3. 102 days
4. 937 days
5. a) $\$ 161.82$
b) 5 years
6. 20 bounces
