Hormones that Affect Growth, Development and Metabolism

SBI 4UI

The Pituitary Gland
- about 1 cm in diameter (about the size of a pea), with two lobes:
 - **posterior pituitary**
 - part of nervous system
 - does not produce any hormones, but stores and releases ADH and oxytocin
 - **anterior pituitary**
 - true hormone-synthesizing gland
 - produces and stores six major hormones (TSH, ACTH, PRL, hGH, FSH, LH)

The Pituitary Gland

Human Growth Hormone
- produced and secreted from anterior pituitary
- ultimately affects almost every body tissue, for example:
 - protein synthesis
 - cell division and growth (especially of cartilage, bone and muscle)
 - metabolic breakdown and release of fats stored in fat tissue

GH over/underproduction
- In children:
 - Low secretion: **dwarfism**
 - High secretion: **gigantism**
- In adults (after growth plates fuse)
 - **acromegaly**

Thyroid Gland
- located directly below larynx
- has two lobes (one on each side of the trachea)
- releases **thyroxine (T_4)**
Thyroxine
- Regulate metabolic rate:
 - Higher secretion = higher metabolic rate
 - Lower secretion = lower metabolic rate
 - Can’t break down sugars as quickly – excess glucose → glycogen → fat
 - Muscle weakness, cold intolerance, and dry skin and hair

Thyroxine
- **hypothyroidism**
 - condition resulting when thyroid produces extremely low levels of thyroxine
- **hyperthyroidism**
 - condition resulting when thyroid produces extremely high levels of thyroxine

Thyroxine Regulation
- Negative feedback
- Increase in metabolic rate:
 - Hypothalamus secretes thyroid-releasing hormone (TRH)
 - TRH → pituitary to release thyroid-stimulating hormone (TSH)
 - TSH → thyroid gland to release thyroxine
 - thyroxine increases cells’ sugar utilization
 - Higher thyroxine levels inhibits TRH release from hypothalamus

Thyroxine Feedback Control

Thyroid Disorders
- Inadequate iodine:
 - Decrease in thyroxine secretion
 - → more TSH produced
 - thyroid enlargement (goitre) (no negative feedback, so thyroid is stimulated more and more)

The Thyroid Gland and Calcitonin
- calcium is essential for healthy teeth and skeletal development
- calcium also plays an important role in nerve conduction, blood clotting and muscle contraction
- when the concentration of calcium in the blood rises too high, calcitonin is released:
 - stimulates the uptake of calcium into bones
Parathyroid Glands
- Hidden within thyroid gland
- If removed: tetanus (muscle seizing caused by abnormal calcium levels)
- Not controlled by nerves – respond directly to local chemical changes
 - Ex. Low calcium in blood stimulates parathyroid hormone (PTH) release
 - Calcium levels increase in blood and phosphate levels decrease
 - Increase in calcium inhibits PTH release

PTH regulation of calcium
- Increase in Ca^{2+} inhibits PTH release
- Too much PTH:
 - Bone breakdown
 - Calcification of blood vessels,
 - Formation of kidney stones
- Too little PTH:
 - Vit.D inactivation
 - Rickets

Try this:
- Learning Check Q. Pg. 399 #7-12
- Learning Check Q. Pg. 402 #13,14,16