U7D3 Future Value Annuities

Tuesday, December 12, 2017

3:29 PM

U7D3 Future Value Annuities

Annuity (Definition)

An annuity is series of regular payments (or withdrawals) of the same amount each time.

Two basic types of annuity problems:

- 1. Future Value Annuities
- 2. Present Value Annuities

Method 1: Using a timeline.

Ex #1 – Find the future value of \$500 deposited at the end of each year for 4 years at an annual interest rate of 8% compounded annually $A = D(1+1)^n$

Use A=(1+i)ⁿ for each deposit

Therefore, the annuity will be worth \$ 2 253.06

Method 2: Using the Annuity Formula.

$$A = \frac{R[(1+i)^n - 1]}{i}$$

Where A is the accumulated amount of the annuity including interest

R is the "regular" payment or deposit i is the interest rate per compounding period n is the number of payments

Ex #1 – Find the future value of \$500 deposited at the end of each year for 4 years at an annual interest rate of 8% compounded annually.

$$R = 500 \quad i = 0.08 \quad n = 4 \quad A = ?$$

$$A = \frac{500 \left[(1.08)^{4} - 1 \right]}{0.08}$$

$$A = 2253.06$$

:. the investment is worth \$ 2253.06

Method 3: Using technology: Ex #1 – Find the future value of \$500 deposited at the end of each year for 4 years at an annual interest rate of 8%

If your parents deposit \$100 every month 2. into an education fund, for 18 years, how much will be in the account at the time of the last deposit. Interest rate is 3%/a compounded monthly. Answer: \$28 594.03

$$A=?$$
 $P=100$ $i=0.03$ $n=18\times12$ $n=216$

$$A = \frac{100 \left[(1 + 0.03 \div 12)^{216} - 1 \right]}{(0.03 \div 12)}$$

$$= {}^{4}28594.03$$

= #28 594.03 ... you would have \$28594.03.