U2D12 MCR3UI Worksheet Quadratics Review

1. Consider the quadratic function $f(x) = -3(x-2)^2 + 5$.

- a) State the direction of opening, the vertex, and the axis of symmetry.
- b) State the domain and range.
- c) Graph the function.
- 2. Consider the quadratic function f(x) = 4(x 2)(x + 6).
 - a) State the direction of opening, and the zeros of the function.
 - b) Determine the coordinates of the vertex.
 - b) State the domain and range.
 - c) Graph the function.
- 3. Determine the equation of the axis of symmetry of the parabola with points (-5,3) and (3,3) equally distant from the vertex on either side of it.
- 4. For each quadratic function, state the maximum or minimum value and where it will occur. a) $f(x) = -3(x-4)^2 + 7$ b) f(x) = 4x(x+6)
- 5. The height, h(t), in metres, of the trajectory of a football is given by $h(t) = 2 + 28t \frac{49}{10}t^2$, where t is the time in flight, in seconds. Determine the maximum height of the football and the time when that height is reached. (Use fractions)
- 6. Express each number as a mixed radical in simplest form.

a)
$$\sqrt{98}$$
 b) $-5\sqrt{32}$ c) $4\sqrt{12} - 3\sqrt{48}$ d) $(3 - 2\sqrt{7})^2$

- 7. Determine the *x*-intercepts of the quadratic function $f(x) = 2x^2 + x 15$.
- 8. The population of a Canadian city is modelled by $P(t) = 12t^2 + 800t + 40\,000$, where t is the time in years. When t = 0, the year is 2007.
 - a) According to the model, what was the population expected to be in 2020?

b) In what year is the population predicted to be 300 000?

- 9. The height, h(t), of a projectile, in metres, can be modelled by the equation $h(t) = 14t 5t^2$, where t is the time in seconds after the projectile is released. Can the projectile ever reach a height of 9 m? Explain.
- 10. Determine the values of k for which the function $f(x) = 4x^2 3x + 2kx + 1$ has two zeros. Check these values in the original equation.
- 11. Determine the break-even points of the profit function $P(x) = -2x^2 + 7x + 8$, where x is the number of dirt bikes produced, in thousands.
- 12. Determine the equation of the parabola with roots $2 + \sqrt{3}$ and $2 \sqrt{3}$, and passing through the point (2,5).
- 13. Describe the characteristics that the members of the family of parabolas $f(x) = a(x + 3)^2 4$ have in common. Which member passes through the point (-2, 6)?
- 14. An engineer is designing a parabolic arch. The arch must be 15 m high, and 6 m wide at a height of 8 m.a) Determine a quadratic function that satisfies these conditions.b) What is the width of the arch at its base?
- 15. Calculate the point(s) of intersection of $f(x) = 2x^2 + 4x 11$ and g(x) = -3x + 4
- 16. The height, h(t), of a baseball, in metres, at time t seconds after it is tossed out of a window is modelled by the function $h(t) = -5t^2 + 20t + 15$. A boy shoots at the baseball with a paintball gun. The trajectory of the paintball is given by the function g(t) = 3t + 3. Will the paintball hit the baseball? If so, when? At what height will the baseball be?

U2D12 MCR3UI Worksheet Quadratics Review

- 17. a) Will the parabola defined by $f(x) = x^2 6x + 9$ intersect the line g(x) = -3x 5? Justify your answer. b) Change the slope of the line so that it will intersect the parabola in two locations.
- 18. You are given $f(x) = -5x^2 + 10x 5$.
 - a) Express the function in factored form and determine the vertex.
 - b) Identify the zeros, the axis of symmetry, and the direction of opening.
 - c) State the domain and range.
 - d) Graph the function.
- 19. For each function, state whether it will have a maximum or a minimum value. Describe the method you would choose to calculate the maximum or minimum value.

a)
$$f(x) = -2x^2 - 8x + 3$$
 b) $f(x) = 3(x - 1)(x + 5)$

- 20. Calculate the value of k such that $kx^2 4x + k = 0$ has one root.
- 21. Does the linear function g(x) = 6x 5 intersect the quadratic function $f(x) = 2x^2 3x + 2$? How can you tell? If it does intersect, determine the point(s) of intersection.
- 22. Determine the equation in standard form of the parabola shown to the right.
- 23. a) Simplify $(2 \sqrt{8})(3 + \sqrt{2})$.
- b) Simplify $(3 + \sqrt{5})(5 \sqrt{10})$.

ANSWERS:

1. a) down; V(2,5); x = 2 b) $D: \{x | x \in \mathbb{R}\}$ c) $R: \{y | y \in \mathbb{R}, y \le 5\}$ 2. a) up; x = 2, x = -6 b) V(-2, -64) c) $D: \{x | x \in \mathbb{R}\}$ $R: \{y | y \in \mathbb{R}, y \ge -64\}$ 3. x = -1 4. a) Maximum of 7 when x = 4 b) Minimum of -36 when x = -35. 42 m after $\frac{20}{7}$ second 6. a) $7\sqrt{2}$ b) $-20\sqrt{2}$ c) $-4\sqrt{3}$ d) $37 - 12\sqrt{7}$ 7. $x = \frac{5}{2}, x = -3$ 8. a) $52\,428$ b) 2124 9. Yes. 10. $\{k < -\frac{1}{2} \text{ or } k > \frac{7}{2}\}$ 11. 4408 bikes 12. $y = \frac{-5}{3}x^2 + \frac{20}{3}x - \frac{5}{3}$ 13. $V(-3, -4); y = 10(x + 3)^2 - 4$ 14. a) $y = \frac{-7}{9}(x - 3)^2 + 15$ b) 8.783 m15. $\{(-5,19), (\frac{3}{2}, \frac{-1}{2})\}$ 16. Yes, at 15 m after 4 s. 17. a) No. b) $\{m < (-6 - 2\sqrt{14}) \text{ or } m > (-6 + 2\sqrt{14})\}$ 18. a) $f(x) = -5(x - 1)^2; V(1,0)$ b) x = 1; Down c) $D: \{x | x \in \mathbb{R}\}$ $R: \{y | y \in \mathbb{R}, y \le 0\}$ 19. a) Maximum (complete the square or partial factor) b) Minimum (use factored form) 20. a) $\{k = \pm 2\}$ 21. Yes; $D > 0; \{(\frac{7}{2}, 16), (1,1)\}$ 22. $y = -x^2 + 8x - 13$ 23. a) $2 - 4\sqrt{2}$ b) $15 - 3\sqrt{10} + 5\sqrt{5} - 5\sqrt{2}$