© Geometric Relationships (chapter 7 in text)

$>$ From grade 8 ... you must remember
\checkmark How to classify triangles using side lengths
\checkmark How to classify triangles using angle measures
\checkmark When two lines intersect, the opposite angles are equal
\checkmark The sum of the angles of a triangle is \qquad ${ }^{\circ}$
\checkmark When a transversal crosses parallel lines,

- Alternate angles are equal (Z pattern)
- Corresponding angles are equal (F pattern)
- Co-interior angles have a sum of 180° (C pattern)
$>$ Grade 8 review is on pages 362-363 of textbook.
$>$ Terminology (all definitions are in text chapter seven - look for green highlighted words): Vertex, interior angle, exterior angle, ray, equiangular, adjacent, supplementary, complementary, transversal, congruent, convex polygon, concave polygon, pentagon, hexagon, heptagon, octagon, regular polygon, midpoint, median (the line segment joining a vertex of a triangle to the midpoint of the opposite side), bisect, right bisector, centroid (the point where the medians of a triangle intersect), similar
> The sum of the exterior angles of a convex polygon is \qquad ${ }^{\circ}$.
\checkmark RECALL: Convex polygon - all interior angles measure less than 180° See red box on page 370 for diagram of triangle, red box on page 380 for diagram of quadrilateral, 7.3 for convex polygons in general.
> The exterior angle at each vertex of a triangle is equal to the sum of the interior angles at the other two vertices. (E.A.T.) See red box on page 370 for diagram.
$>$ The sum of the interior angles of a quadrilateral is \qquad \circ
- For a polygon with n sides, the sum of the interior angles, in degrees, is $\mathrm{S}=$
$>$ A line segment joining the midpoints of two sides of a triangle is \qquad to the third side and \qquad as long.
$>$ The height of a triangle formed by joining the midpoints of two sides of a triangle is the height of the original triangle.
$>$ The medians of a triangle bisect its \qquad .
$>$ Joining the midpoints of the sides of any quadrilateral produces a \qquad
> The diagonals of a parallelogram \qquad each other.
$>$ The diagonals of a square are equal and they \qquad each other at \qquad angles.
> The diagonals of a rectangle \qquad each other.
> The diagonals of a kite meet at \qquad angles.
$>$ The diagonals of a rhombus bisect each other at \qquad angles.

Example 1: In the diagram, $a+b+c=$

a. $\quad 180^{\circ}$
c. 540°
b. $\quad 360^{\circ}$
d. None of these.

Example 2:
Find the measure of the exterior angle, x.

Example 3: Find the measure of the exterior angle, a.

Example 4: A regular polygon has exterior angles equal to 30°. How many sides does the polygon have?

Example 5: A regular polygon has interior angles equal to 140°. How many sides does the polygon have?

Example 6:

Calculate the value of angle x and angle y, given that the hexagon is regular.

Measurement Relationships (chapter 8 in text)
$>$ Be able to use given formulas to find the area and perimeter of 2-D figures and the surface area, volume of 3-D figures.
$>$ Be able to use the Pythagorean theorem as it relates to slant height, height, and radius in a cone $s^{2}=h^{2}+r^{2}$ and a pyramid $s^{2}=h^{2}+\left(\frac{1}{2} b\right)^{2}$.
> The volume of a prism is 3 times the area of a pyramid with the same dimensions.
$>$ The volume of a cylinder is 3 times the area of a cone with the same dimensions.

Example 7: The volume of a cylinder is $300 \mathrm{~cm}^{3}$. What is the volume of a cone with the same dimensions as the cylinder?

Example 8 A cone has a radius 7 cm and a height of 18 cm . What is its slant height?

Example 9: A sphere has a diameter 12 cm . What is its volume, to the nearest cubic centimeter?

Example 10:

The perimeter of the triangle to the left is 124 cm . Determine the length of each side of the triangle

Example 11:

The area of the right-triangle with base $(4 x+7) \mathrm{cm}$ and height 48 cm is $1320 \mathrm{~cm}^{2}$. Determine the length of the base and the length of the hypotenuse.
$(4 x+7) \mathrm{cm}$

Optimizing Measurements (chapter 9 in text)

> 2D-Optimizing - determining dimensions that will maximize the area or minimize the perimeter

- 4-sided rectangle - a \qquad optimizes the area and perimeter
- To determine dimensions, Given Perimeter:

Given Area:

- 3-sided rectangle (one side does not need fencing) - area and perimeter are optimized when I = 2w
- To determine dimensions, Given Perimeter: Given Area:

3D-Optimizing - determining dimensions that will maximize the volume or minimize the surface area

- Square-based Prism-a \qquad optimizes the volume and surface area
- To determine dimensions, Given Volume:

Given Surface Area:

- Cylinder - the volume and surface area are both optimized when $\mathrm{h}=2 \mathrm{r}$
- To determine dimensions, Given Volume:

Given Surface Area:

Do:
Pages 520-521 \# 1, 2, 4, 7 (ch. 7)
Pages 410 \# 1-7, 9, 10 (ch. 7)
Page 520 \# 8-15, 16a (ch. 8,9)
Pages 472-473 \# 1-12 (ch. 8)
Pages 518-519 \# 1-9 (ch. 9)
Redo old Unit 7, 8 \& 9 Tests.

