Summative Assessment Review - Day 1 Chapters 1, 2 & 3 (Units 1, 2 & 4)

Unit 1: [NUMBER SENSE & ALGEBRA STRAND]

- Integers (Review work with integers!)
- © Rational Number Operations
 - Convert mixed numbers to improper fractions
 - To add or subtract find a common denominator then add or subtract the numerators, keep the denominator the same
 - To multiply reduce if possible then multiply straight across on both the numerator and the denominator
 - To divide multiply by the reciprocals.

Example 1. Simplify:

a)
$$\frac{-3}{5} + \left(\frac{-3}{4}\right) - \frac{7}{10}$$
 b) $\left(\frac{2}{3} - \frac{1}{3}\right) \div \left(\frac{-3}{4} - \frac{-2}{3}\right)$

Unit 2: (Textbook Chapter 3) [NUMBER SENSE & ALGEBRA STRAND]

© Exponent Laws (text 3.2, 3.3)

(a) $a^m \times a^n = a^{m+n}$ To multiply powers with the same base, keep the base the same and add the exponents.

Example 2. a) $4^5 \bullet 4^3$ b) $3^2 \bullet 3^5$

 $a^{m} = a^{m-n}$

To divide powers with the same base, keep the base the same and subtract the exponents.

Example 3. a) $4^6 \div 4^3$ b) $4^{5x} \div 4^{3x}$

(a^m)ⁿ = $a^m \times {}^n$ Power of a power: Keep the base the same and multiply the exponents.

☺ Algebra (text 3.4 – 3.7)

Adding and Subtracting Polynomials
 Adding Adding Polynomials
 Adding Adding Polynomials
 Adding Adding Polynomials
 Adding P

• Can only add/subtract <u>like terms</u> (same variable with the same exponents) Example 6. $3x^2$, $4x^2$, $-2x^2$ (3x, $3x^2$, $-3x^3$ () • Distributive Property a(b + c) = ab + acExample 7. Expand and Simplify: a) 2(3x + 5) b) $\frac{1}{2}(6x + 8) - (2x - 3)$ c) $3x(2x^2 - 4x)$

Unit 4: (Textbook Chapter 2) [LINEAR RELATIONS STRAND]

Relations (Chapter 2)

- Graphing a table of data to create scatter plots
- Line vs. Curve of best fit
- Linear vs. Non-linear relations
- Interpolation vs. Extrapolation

Hypotheses, Sources of Data and Sampling Principles

Primary Data: ______that a researcher gathers for an experiment.

Secondary Data: Data that ______has already gathered for another purpose (usually

from publications like the _____ or _____).

Population: The ______ of people or items being studied.

Census: A survey of ____ members of a _____.

Sample: Any group of people or items selected from a _____.

Random Sample: A sample in which _____ of a _____ have an

_____chance of being chosen.

Simple Random Sample: Choosing a _____ number of members _____ from the _____population.

- Stratified Random sampling:
 Dividing a population into ______ groups and then choosing a ______ number randomly from each group.
- Bias: Error resulting from choosing a sample that does not represent the _____ population

Do:

Pages 98 # 1 – 4, 7 – 8 (ch. 2)

Pages 178-179 # 5, 11 – 19, 21 – 23 (ch 2,3)

Integer and Fractions – Extra Practice Worksheet

More on next page

Redo old tests from units 1 and 2 and 4.

MPM1DI

Ex. 1: Determine the sampling method used in each situation.

- a) One thousand participants in a clinical trial were divided into groups based on their ages (ie. 20-24, 25-29, etc.). Then from these age groups, 20% of the participants were selected randomly to create a sample of 200 individuals.
- b) A random number generator was used to select an individual on a numbered list. From there, every 15th individual on the list was also chosen to be part of the sample.
- Ex 2: Jeff's movements after he left his house are shown on this distance-time graph. Describe his movements (starting and stopping points and speed changes).

Ex. 3: The number of hours per week a person spends training to run 100 m and the time it took this person to run the 100 m are recorded in the table below.

Hours	Time (sec)
per week	to
training	run 100 m
10	14.2
3	15.4
6	15.1
8	14.8
16	13.8
8	14.4
7	14.5
2	15.5
19	13.5
14	13.9

- a) Identify the independent variable.
- b) Graph the data.
- c) Draw a line or curve of best fit.
- d) Predict the time it would take for a person who trains 12 hours per week to run 100m.
 Is this an example of interpolation or extrapolation?
- e) If a person ran the 100m in 12 seconds flat, about how many hours a week would they train? Is this an example of interpolation or extrapolation?

Integers and Fractions – Extra Practice

1. Evaluate.

- a. (-3)(8)b. $\frac{-30}{-6}$ c. $(-2) \times (-2) \times (-2)$ d. (+3) + (-9)e. $\frac{(6)(-15)}{-5}$ f. 5 + (-3) + 7
- g. (+8) + (+3) (-6) + (-3)h. (-5+3) - (8-12)i. (+3) - (-2)(-5)
- j. $(-12) \div (-2) + (-5)(+4)$ k. $\frac{2(-5+3) 2(5-1)}{-7+4}$ l. 4[-6(-2-7) 5(7+2)]
- 2. Use your knowledge of BEDMAS, fractions and integers to evaluate each expression. Write your answers in lowest terms.
 - a. $\frac{5}{9} \frac{2}{9}$ b. $\frac{4}{5} + \frac{7}{15}$ c. $3\frac{1}{4} + 2\frac{2}{3}$

g.
$$\frac{7}{8} + \left(-\frac{1}{4}\right) \times 5$$

h. $\frac{-3}{5} \div \left(\frac{-5}{-12}\right) \div \left(\frac{-9}{10}\right)$
i. $\left(-\frac{3}{5} \times \frac{2}{3}\right) + \frac{5}{6} \div \left(-\frac{5}{3}\right)$

SOLUTIONS: c. -8 b. 5 d. – 6 e. 30 f. 9 1. a. – 24 i. – 7 j. – 14 h. 2 k. 4 g. 14 l. 36 2. a. $\frac{1}{3}$ b. $\frac{19}{15}$ or $1\frac{4}{15}$ c. $5\frac{11}{12}$ or $\frac{71}{12}$ d. $-\frac{7}{20}$ f. $-\frac{5}{12}$ e. 6 g. $-\frac{3}{8}$ h. $1\frac{3}{5}$ or $\frac{8}{5}$ I $-\frac{9}{10}$