Summative Assessment Review - Day 1 Chapters 1, 2 \& 3 (Units 1, 2 \& 4)
Unit 1: [NUMBER SENSE \& ALGEBRA STRAND]
© Integers (Review work with integers!)
() Rational Number Operations
(0) Convert mixed numbers to improper fractions
(0) To add or subtract find a common denominator then add or subtract the numerators, keep the denominator the same
© To multiply reduce if possible then multiply straight across on both the numerator and the denominator
(0) To divide multiply by the reciprocals.

Example 1. Simplify:
a) $\frac{-3}{5}+\left(\frac{-3}{4}\right)-\frac{7}{10}$
b) $\left(\frac{2}{3}-\frac{1}{3}\right) \div\left(\frac{-3}{4}-\frac{-2}{3}\right)$

Unit 2: (Textbook Chapter 3) [NUMBER SENSE \& ALGEBRA STRAND]

() Exponent Laws (text 3.2, 3.3)
(0) $a^{m} \times a^{n}=a^{m+n}$ To multiply powers with the same base, keep the base the same and add the exponents.
Example 2. a) $4^{5} \bullet 4^{3}$
b) $3^{2} \cdot 3^{5}$
(0) $\frac{a^{m}}{a^{n}}=a^{m-n}$ To divide powers with the same base, keep the base the same and subtract the exponents.
Example 3. a) $4^{6} \div 4^{3}$
b) $4^{5 x} \div 4^{3 x}$
(0) $\left(a^{m}\right)^{n}=a^{m} x^{n}$ Power of a power: Keep the base the same and multiply the exponents.

Example 4. $\left(2^{5}\right)^{3}$
Example 5. Simplify: a) $\frac{\left(m^{5}\right)\left(m^{3}\right)}{m^{2}}$
b) $x^{12} \div\left(x^{2}\right)^{5}$
© Algebra (text 3.4-3.7)
© Adding and Subtracting Polynomials

- Can only add/subtract like terms (same variable with the same exponents)

Example 6. $3 x^{2}, 4 x^{2},-2 x^{2}$
$3 x, 3 x^{2},-3 x^{3}$

- Distributive Property
$a(b+c)=a b+a c$
Example 7. Expand and Simplify:
a) $2(3 x+5)$
b) $1 / 2(6 x+8)-(2 x-3)$
c) $3 x\left(2 x^{2}-4 x\right)$

Unit 4: (Textbook Chapter 2) [LINEAR RELATIONS STRAND]

() Relations (Chapter 2)

- Graphing a table of data to create scatter plots
- Line vs. Curve of best fit
- Linear vs. Non-linear relations
- Interpolation vs. Extrapolation

Hypotheses, Sources of Data and Sampling Principles

Primary Data: \qquad that a researcher gathers for an experiment.
Secondary Data: Data that \qquad has already gathered for another purpose (usually
from publications like the \qquad or \qquad).
Population: The \qquad
\qquad of people or items being studied.
Census: A survey of \qquad members of a \qquad .
Sample: Any group of people or items selected from a \qquad .
Random Sample: A sample in which \qquad of a \qquad have an
\qquad chance of being chosen.
Simple Random Sample: Choosing a \qquad number of members \qquad from the population.
Systematic Random Sampling: Choosing members of a population at \qquad from a population.
Stratified Random sampling: Dividing a population into \qquad groups and then choosing a \qquad number randomly from each group.
Bias: Error resulting from choosing a sample that does not represent the
\qquad population
Do:
Pages 98 \# 1-4, $7-8$ (ch. 2)
Pages 178-179 \# 5, 11 - 19, 21 - 23 (ch 2,3)
Integer and Fractions - Extra Practice Worksheet

Redo old tests from units 1 and 2 and 4.

MPM1DI
Ex. 1: Determine the sampling method used in each situation.
a) One thousand participants in a clinical trial were divided into groups based on their ages (ie. 20-24, 25-29, etc.). Then from these age groups, 20% of the participants were selected randomly to create a sample of 200 individuals.
b) A random number generator was used to select an individual on a numbered list. From there, every $15^{\text {th }}$ individual on the list was also chosen to be part of the sample.
Ex 2: Jeff's movements after he left his house are shown on this distance-time graph. Describe his movements (starting and stopping points and speed changes).

Independent Variable :

variable that affects another variable.
Always plotted on the \qquad -axis.

Dependent Variable :

variable that is affected by some other variable (i.e. its value depends on another).

It is always plotted on the \qquad -axis.

Ex. 3: The number of hours per week a person spends training to run 100 m and the time it took this person to run the 100 m are recorded in the table below.

Hours per week training	Time (sec) to run $\mathbf{1 0 0} \mathbf{~ m}$
10	14.2
3	15.4
6	15.1
8	14.8
16	13.8
8	14.4
7	14.5
2	15.5
19	13.5
14	13.9

a) Identify the independent variable.
b) Graph the data.
c) Draw a line or curve of best fit.
d) Predict the time it would take for a person who trains 12 hours per week to run 100 m . Is this an example of interpolation or extrapolation?
e) If a person ran the 100 m in 12 seconds flat, about how many hours a week would they train? Is this an example of interpolation or extrapolation?

1. Evaluate.
a. $(-3)(8)$
b. $\frac{-30}{-6}$
c. $(-2) \times(-2) \times(-2)$
d. $(+3)+(-9)$
e. $\frac{(6)(-15)}{-5}$
f. $5+(-3)+7$
g. $(+8)+(+3)-(-6)+(-3)$
h. $(-5+3)-(8-12)$
i. $(+3)-(-2)(-5)$
j. $(-12) \div(-2)+(-5)(+4)$
k. $\frac{2(-5+3)-2(5-1)}{-7+4}$
I. $4[-6(-2-7)-5(7+2)]$
2. Use your knowledge of BEDMAS, fractions and integers to evaluate each expression. Write your answers in lowest terms.
a. $\frac{5}{9}-\frac{2}{9}$
b. $\frac{4}{5}+\frac{7}{15}$
c. $3 \frac{1}{4}+2 \frac{2}{3}$
d. $-\frac{3}{4}-\left(\frac{-2}{5}\right)$
e. $\left(\frac{50}{-9}\right) \times\left(\frac{-27}{25}\right)$
f. $\left(\frac{5}{8}\right) \div\left(-\frac{3}{2}\right)$
g. $\frac{7}{8}+\left(-\frac{1}{4}\right) \times 5$
h. $\frac{-3}{5} \div\left(\frac{-5}{-12}\right) \div\left(\frac{-9}{10}\right)$
i. $\left(-\frac{3}{5} \times \frac{2}{3}\right)+\frac{5}{6} \div\left(-\frac{5}{3}\right)$

SOLUTIONS:

1.

a. -24
b. 5
c. -8
d. -6
e. 30
f. 9
g. 14
h. 2
i. -7
j. -14
k. 4
I. 36
2.
a. $\frac{1}{3}$
b. $\frac{19}{15}$ or $1 \frac{4}{15}$
c. $5 \frac{11}{12}$ or $\frac{71}{12}$
d. $-\frac{7}{20}$
e. 6
f. $-\frac{5}{12}$
g. $-\frac{3}{8}$
h. $1 \frac{3}{5}$ or $\frac{8}{5}$
$1-\frac{9}{10}$

