Unit 2 Day 12: Review

Obtuse Angles

Obtuse angle - $90^{\circ} \leq \theta \leq 180^{\circ}$
Supplementary Angles $A+B=180^{\circ}$

$$
\sin A=\sin B, \quad \cos A=-\cos B, \quad \tan A=-\tan B
$$

The primary trigonometric ratios of an angle, θ, in standard position are defined in terms of the coordinates of a point, (x, y), on the terminal arm, as follows:

$$
\sin \theta=\frac{y}{r} \quad \cos \theta=\frac{\mathrm{x}}{\mathrm{r}} \quad \tan \theta=\frac{\mathrm{y}}{\mathrm{x}} \quad \text { where } \mathrm{r}=\sqrt{\mathrm{x}^{2}+\mathrm{y}^{2}}
$$

Bearing and Directions

Bearings-050 ${ }^{\circ}$, Directions - N50 ${ }^{\circ}$ E

Types of Problems

Directions,
Solve a Triangle
Area

Practice Drawing Triangles.

Draw the following triangles, state unknowns and approach to solving (You do not need to solve):

1. Triangle $A B C$, where $a=8 m, b=4 m, A=90^{\circ}$
2. Triangle $X Y Z$, where $X=108^{\circ}, z=27 \mathrm{~mm}, y=12 \mathrm{~mm}$.
3. Triangle $P Q R$, where $P=43^{\circ}, R=118^{\circ}, q=50 \mathrm{~m}$.

Example \#1 : Calculate the length of the unknown side in each triangle.

a.
b.
C.

$3.0 \mathrm{Z} \overbrace{y}^{x}\rangle_{\mathrm{y}}$

Example \#2 : Calculate the indicated angle in each triangle.

a.

b.

C.

Example \#3

The terminal arm of an angle, θ, in standard position goes through $A(-2,5)$.
a) Determine the length of OA (The hypotenuse, r)
b) Find the three primary trig ratios, rounded to 3 decimal places.
c) Determine the value of θ.

Example \#4

Determine the value(s) of all possible angles.
a) $\sin A=0.732$
b) $\cos B=0.495$
c) $\operatorname{tanC}=-0.391$
d) $\tan D=4.721$
e) $\sin E=0.198$
f) $\cos F=-0.707$

Answers: Drawing $\Delta^{\prime} s 1 . \mathrm{B}=30^{\circ}, \mathrm{C}=60^{\circ} \quad$ 2. $\mathrm{x}=32.8 \mathrm{~mm}, \mathrm{Y}=20^{\circ}, \mathrm{Z}=52^{\circ} \quad$ 3. $\mathrm{Q}=19^{\circ}, \mathrm{r}=135 \mathrm{~m}, \mathrm{p}=104.7 \mathrm{~m}$
Ex. 1 a) 3.6 cm , b) 6 m, c) 7.6 cm Ex. 2 a) 33° b) 37° c) 38° Ex. 3 a) $\sqrt{29}$ b) $\sin \theta=0.928 \cos \theta=-0.371$ $\tan \theta=-2.5$ c) $\theta=112^{\circ}$ Ex. 4 a) 133° OR 47° b) 60° c) 159° d) 78° e) 11° OR 169° f) 135°

Example \#5 ${ }^{* *}$ CHALLENGE QUESTION**

A boat is proceeding on a bearing of 045° at $12 \mathrm{~km} / \mathrm{hr}$. At 3:00PM the captain sees a navigation buoy at 020°. He sees the same buoy at 230° at $4: 15$. How many km's is the boat from the buoy at $4: 15 \mathrm{PM}$?
a. Draw the figure
b. Determine what Trig Rules to use
c. Solve for unknown.

