Scenario: Frank deposits $\$ 1000$ into a savings account (5\%/a compounded monthly) every year for 10 years. How much will his investment be worth at the end of 10 years?

What makes the above scenario difficult to calculate?

Annuity: a series of equal payments/deposits made at regular intervals of time. Each payment/deposit is made at the end of each payment period.

Example 1: Nigel deposits $\$ 500$ on May $1^{\text {st }}$, every year for 5 years. The investment earns $8 \% /$ a compounded annually. How much will be in the account after he makes his final deposit?

Solution: Use the timeline to visualize how/when the interest is earned.

Total Amount =
reverse the sum:
Wow!! This looks like a \qquad with $a=$ \qquad
and $r=$ \qquad and $\mathrm{n}=$ \qquad
Therefore use the formula: $S_{n}=$

$$
\begin{array}{ll}
\text { Ordinary Annuity Formula } & \\
\qquad \begin{array}{ll}
\mathrm{R} & =\text { payment made at each interval } \\
A=\frac{R\left[(1+i)^{n}-1\right]}{i} & \mathrm{i}=\text { interest rate per compounding period } \\
& \mathrm{n}=\text { total number of payments/deposits }
\end{array}
\end{array}
$$

Example 2: Jane deposits $\$ 100$ on March 31, June 30, September 30 and December 31 every year for 20 years. The investment pays $4 \% /$ a compounded quarterly. How much is in the account when the last payment is made?
$A=$
$R=$
$i=$
$n=$

Example 3: You want to retire with $\$ 1000000$. What equal monthly payment will achieve this goal? (Assume 35 years of regular monthly deposits). The account pays $10 \% /$ a compounded monthly.
$A=$
$R=$
$i=$
$n=$
** How does this change if you make regular deposits for 40 years?

Example 4: Suppose you deposit $\$ 1000$ into an investment account every 6 months for 10 years, then leave the amount on deposit for another 30 years. The money earns an average return of 9% compounded semi-annually. How much will be in the account after 40 years?
Tip: there are 2 different investments

