U7D7_T Short Binomial Exp _ Pascal

8:34 PM

Monday, May 20, 2019

U7D7_T Short Bin...

U7D7 MCR 3UI

Pascal's Triangle

<u>Preamble</u> A <u>binomial</u> is an algebraic expression containing two terms.

Ex.
$$3x + 1$$
, $1 - x^2$, $3x - 7y$

Today we will learn how to expand binomials raised to any power without the use of tedious and lengthy calculations.

Ex.
$$(3x - 2y)^3 = (3x - 2y)(3x - 2y)(3x - 2y)$$

$$= (9x^2 - 12xy + 4y^2)(3x - 2y)$$

$$= 37x^3 - 18x^2y - 36x^2y + 24xy^2 + 12xy^2 - 8y^3$$

$$= 27x^3 - 54x^2y + 36xy^2 - 8y^3$$

<u>Part A</u> The following powers of the binomial (x + y) have been expanded and simplified.

Keep in mind that to expand $(x + y)^n$, you must multiply (x + y) by $(x + y)^{n-1}$.

In other words, the previous answer must be used to proceed.

$$(x+y)^{0} = 1$$

$$(x+y)^{1} = x+y$$

$$(x+y)^{2} = (x+y)(x+y) = x^{2} + 2xy + y^{2}$$

$$(x+y)^{3} = (x^{2} + 2xy + y^{2})(x+y) = x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

$$(x+y)^{4} = (x^{3} + 3x^{2}y + 3xy^{2} + y^{3})(x+y) = x^{4} + 4x^{3}y + 6x^{2}y^{2} + 4xy^{3} + y^{4}$$

$$(x+y)^{5} = x^{5} + 5x^{4}y + 10x^{3}y^{2} + 10x^{2}y^{3} + 5xy^{4} + y^{5}$$
Part B These patterns are found in the simplified expansions.

If n is the exponent on (x + y),

- 1. Pattern of x -exponents: n, n-1, n-2, ..., 1, 0
- 2. Pattern of y exponents: 0, 1, 2, ..., n 1, n 2
- 3. The sum of the exponents in each term is n.
- 4. The first and last terms in each expansion have a coefficient 1.
- 5. The second and second-last terms in each expansion have a coefficient *n*.
- 6. There are n+1 terms in the expansion.

Part C Summary of the expansion coefficients.

n	Coefficients	Row Sum
0	1	1 =
1	1 1	2 =
2	1 2 1	4 =
3	1 3 3 1	8=
4	1 4 6 4 1	16
5	1 5 10 10 5 1	32
6	1 6 15 20 15 6 1	64
7	1 7 21 35 35 21 7 1	128
8	1 8 28 56 70 56 28 8 1	256
n	'	2 ⁿ

- <u>Part D</u> These are characteristics of the numbers in Pascal's triangle.
 - 1. The sum of row n is 2^n
 - 2. Each row begins and ends with a 1, each row is symmetric
 - 3. <u>Each term is the sum of the two terms</u> directly above.
 - 4. Row n has n + 1 terms.

Part E Using Pascal's triangle and the patterns you have discovered today, expand: $(x+v)^6$ | 6 | 15 20 15 6 |

$$= |x^{6}y^{9} + 6x^{5}y^{1} + 15x^{4}y^{2} + 20x^{3}y^{3} + 15x^{2}y^{4} + 6x^{4}y^{5} + |x^{6}y^{5}|$$

$$= |x^{6}y^{9} + 6x^{5}y^{1} + 15x^{4}y^{2} + 20x^{3}y^{3} + 15x^{2}y^{4} + 6x^{4}y^{5} + |x^{6}y^{5}|$$

$$= |x^{6}y^{9} + 6x^{5}y^{1} + 15x^{4}y^{2} + 20x^{3}y^{3} + 15x^{2}y^{4} + 6x^{4}y^{5} + |x^{6}y^{5}|$$

$$= |x^{6}y^{9} + 6x^{5}y^{1} + 15x^{4}y^{2} + 20x^{3}y^{3} + 15x^{2}y^{4} + 6x^{4}y^{5} + |x^{6}y^{5}|$$

$$= |x^{6}y^{9} + 6x^{5}y^{1} + 15x^{4}y^{2} + 20x^{3}y^{3} + 15x^{2}y^{4} + 6x^{4}y^{5} + |x^{6}y^{5}|$$

$$= |x^{6}y^{9} + 6x^{5}y^{1} + 15x^{4}y^{2} + 20x^{3}y^{3} + 15x^{2}y^{4} + 6x^{4}y^{5} + |x^{6}y^{5}|$$

$$= |x^{6}y^{9} + 6x^{5}y^{1} + 15x^{4}y^{2} + 20x^{3}y^{3} + 15x^{2}y^{4} + 6x^{4}y^{5} + |x^{6}y^{5}|$$

$$= |x^{6}y^{9} + 6x^{5}y^{1} + 15x^{4}y^{2} + 20x^{3}y^{3} + 15x^{2}y^{4} + 6x^{4}y^{5} + |x^{6}y^{5}|$$

$$= |x^{6}y^{9} + 6x^{5}y^{1} + 15x^{4}y^{2} + 20x^{3}y^{3} + 15x^{2}y^{4} + 6x^{4}y^{5} + |x^{6}y^{5}|$$

$$= |x^{6}y^{9} + 6x^{5}y^{1} + 15x^{4}y^{2} + 20x^{3}y^{3} + 15x^{2}y^{4} + 6x^{4}y^{5} + |x^{6}y^{5}|$$

$$= |x^{6}y^{9} + 6x^{5}y^{1} + 15x^{4}y^{2} + 20x^{3}y^{3} + 15x^{2}y^{4} + 6x^{4}y^{5} + |x^{6}y^{5}|$$

$$= |x^{6}y^{9} + 6x^{5}y^{1} + 15x^{4}y^{2} + 20x^{3}y^{3} + 15x^{2}y^{4} + 6x^{4}y^{5} + |x^{6}y^{5}|$$

$$= |x^{6}y^{9} + 6x^{5}y^{2} + 15x^{2}y^{4} + |x^{6}y^{5}|$$

$$= |x^{6}y^{9} + |x^{6}y^{5}| + |x^{6}y^{5}|$$

$$= |x^{6}y^{9} + |x^{6}y^{5}| +$$

Part F How is the expansion of
$$(x - y)^2$$

different from $(x + y)^2$? $[x + (-y)]^2$
= $|x^2(-y)^2 + 2x^2(-y)^2 + |x^2(-y)^2|$
= $|x^2 - 2xy + y^2|$

Part G Expand the following.

$$(x - y)^3 = \chi^3 + 3\chi^2 (-y) + 3\chi (-y)^2 + (4y)^3$$
$$= \chi^3 - 3\chi^2 y + 3\chi y^2 - y^3$$

$$(x-y)^{5} = \chi^{5} - 5\chi^{4}y + 10\chi^{3}y^{2} - 10\chi^{2}y^{3} + 5\chi y^{4} - y^{5}$$

15101051 5×16×3 10×8×9 $(2x + 3)^5 = (2x)^5 + 5(2x)^4(3) + 10(2x)^3(3)^2 + 10(2x)^2(3)^3$ $+5(2x)(3)^{4}+3^{5}$ $=32x^{5}+240x^{4}+720x^{3}+1080x^{2}+810x+243$ 1 6 15 20 15 61 $(x^2 - 1)^6 = (x^2)^6 - ((x^2)^5 + 15(x^2)^4 - 20(x^2)^3 + 15(x^2)^2$ $-6(x^2)+1$ $= \chi^{12} - 6\chi^{10} + 15\chi^{8} - 20\chi^{6} + 15\chi^{4} - 6\chi^{2} + 1$ 1 7 21 35 35 21 7 1 $(2x^2 - y)^7 = (2x^2)^7 - 7(2x^2)^6 y^{12} (2x^2)^5 y^2 - 35(2x^2)^4 y^3$ $+35(2x^{2})^{3}y^{4}-21(2x^{2})^{2}y^{5}+7(2x^{2})y^{6}-y^{7}$ = $|28x^{14} - 448x^{12}y + 672x^{10}y^2 - 560x^{8}y^3 + 280x^{6}y^4 - 84x^{4}y^5$ + 14226-4 In the expansion of

(32-y)" what is the coefficient of the xyterm? Given 1 8 285670... is one line of Pascal's D. JUTPOT Practice: Worksheet - Pascal's Triangle

Meview for Unit Test: p. 480 - 485 (Pick N Choose)

1 9 36 $45(3x^2)^8(-1)^2$ 10 45 the coefficient is $45(3)^8(-1)^2 = 295245$

10C2 = 45