U7D7 T
Short Bin...

U7D7 MGR SUI

Pascal's Triangle

Preamble A binomial is an algebraic expression containing two terms.
Ex. $\quad 3 x+1$,
$1-x^{2}$,
$3 x-7 y$

Today we will learn how to expand binomials raised to any power without the use of tedious and lengthy calculations.
Ex. $(3 x-2 y)^{3}=(3 x-2 y)(3 x-2 y)(3 x-2 y)$

$$
=\left(9 x^{2}-12 x y+4 y^{2}\right)(3 x-2 y)
$$

$$
=27 x^{3}-\frac{18 x^{2} y-36 x^{2} y}{2}+24 x y^{2}+12 x y^{2}-8 y^{3}
$$

$$
=27 x^{3}-54 x^{2} y+36 x y^{2}-8 y^{3}
$$

Part A The following powers of the binomial $(x+y)$ have been expanded and simplified.

Keep in mind that to expand $(x+y)^{n}$, you must multiply $(x+y)$ by $(x+y)^{n-1}$.

In other words, the previous answer must be used to proceed.

$$
\begin{aligned}
& (x+y)^{0}=\quad 1 \\
& (x+y)^{1}=\quad x+y \\
& (x+y)^{2}=(x+y)(x+y)=\quad x^{2}+2 x y+y^{2} \\
& (x+y)^{3}=\left(x^{2}+2 x y+y^{2}\right)(x+y)=\quad x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
& (x+y)^{4}=\left(x^{3}+3 x^{2} y+3 x y^{2}+y^{3}\right)(x+y)=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4} \\
& (x+y)^{5}=\quad x^{5}+5 x^{4} y+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5}
\end{aligned}
$$

Part B These patterns are found in the simplified expansions.

$$
\begin{gathered}
1 \\
x+y \\
x^{2}+2 x y+y^{2} \\
x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \\
x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4} \\
x^{5}+5 x^{4} y^{1}+10 x^{3} y^{2}+10 x^{2} y^{3}+5 x y^{4}+y^{5}
\end{gathered}
$$

If \boldsymbol{n} is the exponent on $(\boldsymbol{x}+\boldsymbol{y})_{\text {, }}$

1. Pattern of x-exponents: $n, n-1, n-2, \ldots, 1,0$
2. Pattern of y-exponents: $0,1,2, \ldots, n-1, n-2$
3. The sum of the exponents in each term is n.
4. The first and last terms in each expansion have a coefficient 1.
5. The second and second-last terms in each expansion have a coefficient n.

6 . There are $\boldsymbol{n}+1$ terms in the expansion.

Part C Summary of the expansion coefficients.

Part D These are characteristics of the numbers in Pascal's triangle.

1. The sum of row n is 2^{n}
2. Each row begins and ends with a 1, each row is symmetric
3. Each term is the sum of the two terms directly above.
4. Row n has $n+1$ terms.

Part E Using Pascal's triangle and the patterns you have discovered today, expand :

$$
\begin{aligned}
& (x+y)^{6} \quad 16152015 \\
= & 1 x^{6} y^{0}+6 x^{5} y^{1}+15 x^{4} y^{2}+20 x^{3} y^{3}+15 x^{2} y^{4}+6 x^{5} y^{5}+1 x^{0} y^{6} \\
= & x^{6}+6 x^{5} y+15 x^{4} y^{2}+20 x^{3} y^{3}+15 x^{2} y^{4}+6 x y^{5}+y^{6}
\end{aligned}
$$

Part F How is the expansion of $(x-y)^{2}$ different from $(x+y)^{2} ?[x+(-y)]^{2}$

$$
\begin{aligned}
& =1 x^{2}(-y)^{0}+2 x^{1}(-y)^{1}+1 x^{0}(-y)^{2} \\
& =x^{2}-2 x y+y^{2}
\end{aligned}
$$

Part G Expand the following.

$$
\begin{aligned}
(x-y)^{3} & =x^{3}+3 x^{2}(-y)+3 x(-y)^{2}+(-y)^{3} \\
& =x^{3}-3 x^{2} y+3 x y^{2}-y^{3}
\end{aligned}
$$

$$
\begin{aligned}
& 15101051 \\
& \quad(x-y)^{5}=x^{5}-5 x^{4} y+10 x^{3} y^{2}-10 x^{2} y^{3}+5 x y^{4}-y^{5}
\end{aligned}
$$

$\begin{array}{lllll}1 & 5 & 10 & 10 & 5\end{array}$

$$
\begin{aligned}
&(2 x+3)^{5}=(2 x)^{5}+5(2 x)^{5}(3)+10(2 x)^{3}(3)^{2}+10(2 x)^{2}(3)^{3} \\
&+5(2 x)(3)^{4}+3^{5} \\
&=32 \times 8 x^{5}+240 x^{4}+720 x^{3}+1080 x^{2}+810 x+243
\end{aligned}
$$

1615201561

$$
\begin{aligned}
\left(x^{2}-1\right)^{6}= & \left(x^{2}\right)^{6}-6\left(x^{2}\right)^{5}+15\left(x^{2}\right)^{4}-20\left(x^{2}\right)^{3}+15\left(x^{2}\right)^{2} \\
& -6\left(x^{2}\right)+1 \\
= & x^{12}-6 x^{10}+15 x^{8}-20 x^{6}+15 x^{4}-6 x^{2}+1
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llllll}
172135 & 35 & 7
\end{array} \\
& \left(2 x^{2}-y\right)^{7}=\left(2 x^{2}\right)^{7}-7\left(2 x^{2}\right)^{6} y+21\left(2 x^{2}\right)^{5} y^{2}-35\left(2 x^{2}\right)^{4} y^{3} \\
& +35\left(2 x^{2}\right)^{3} y^{4}-21\left(2 x^{2}\right)^{2} y^{5}+7\left(2 x^{2}\right)^{6}-y^{7} \\
& =128 x^{18}-448 x^{12} y+672 x^{10} y^{2}-560 x^{8} y^{3}+280 x^{6} y^{4}-84 x^{4} y^{5} \\
& +14 x^{2} y^{6}-y^{7}
\end{aligned}
$$

In the expansion of $\left(3 x^{2}-y\right)^{10}$, what is the coefficient of the $x^{162} y^{2} t \mathrm{erm}^{?}$? Given 18 ' $285670 \ldots$ is one tine of Pascal's \triangle. Crop Practice: Worksheet - Pascal's Triangle

1. $936 \quad 45\left(3 x^{2}\right)^{8}(-1)^{2}$

1 io (45) the coefficient is $45(3)^{8}(-1)^{2}=295245$

$$
{ }_{10} C_{2}=45
$$

