U7D5_T Geometric Series

U7D5 T
Geometri..

U7D5 MCR 3UI Geometric Series

A geometric series is the SUM of the terms of a geometric sequence.
If the sequence is $t_{1}, t_{2}, t_{3}, t_{4}, \ldots, t_{n}$ then the series is
$S_{1}, S_{2}, S_{3}, S_{4}, \ldots, S_{n}$ where :

$$
s_{1}=t_{1}=a
$$

$$
s_{2}=t_{1}+t_{2}=a+a r
$$

$$
s_{3}=t_{1}+t_{2}+t_{3}=a+a r+a r^{2}
$$

$$
s_{4}=t_{1}+t_{2}+t_{3}+t_{4}=a+a r+a r^{2}+a r^{3}
$$

In general

$$
\begin{aligned}
s_{n}= & \frac{a\left(r^{n}-1\right)}{r-1}, r \neq 1 \\
& a \text { is first term }\left(t_{1}\right)
\end{aligned}
$$

r is common ratio
n is the of terms

Examples:

1. Find the sum of the first 10 terms

$$
\begin{aligned}
& \text { of } 5,10,20,40, \ldots \\
& a=5 \quad r=2 \quad n=10 \quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1} \\
& S_{10}=\frac{5\left(2^{10}-1\right)}{2-1} \\
& S_{10}=\frac{5(1023)}{1} \\
& S_{10}=5115
\end{aligned}
$$

2. Find the sum of $-4+12-36+\ldots+972$.

$$
a=-4 \quad r=-3 \quad n=? \quad t_{n}=972, S_{n}=?
$$

First use t_{n} formula to
find n.

$$
\begin{aligned}
& \begin{array}{l}
t_{n}=a r^{n-1} \\
(-4)(-3)^{n-1}=972 \\
(-3)^{n-1}=972 \div(-4) \\
(-3)^{n-1}=-243 \\
(-3)^{n-1}=(-3)^{5} \\
n-1=5 \\
n=6
\end{array} \\
& \begin{array}{l}
n=\frac{a\left(r^{n}-1\right)}{r-1} \\
s_{n}
\end{array} \quad \begin{array}{l}
s_{6}=\frac{(-4)\left[(-3)^{6}-1\right]}{-3-1} \\
s_{6}=\frac{-4(729-1)}{-4} \\
s_{6}=728
\end{array}
\end{aligned}
$$

Summary : Formula List
General Term
Geometric Sequence $t_{n}=a r^{n-1}$

Arithmetic Sequence $t_{n}=a+(n-1) d$

Series
Arithmetic $\quad S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\underset{\text { (alternate version) }}{\text { Arithmetic }} S_{n=\frac{n}{2}}\left(a+t_{n}\right)$

Geometric $\quad S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$

U7D5 Practice: p. 452\#1-7(e00), 0, 12, 16
$\operatorname{Pg} 476$ \#1-5 (eos) Correction 2e)90910

