\qquad of the terms of an arithmetic sequence.

If the sequence is $t_{1}, t_{2}, t_{3}, t_{4}, \ldots, t_{n}$, then the series is $S_{1}, S_{2}, S_{3}, S_{4}, \ldots, S_{n}$ where :

$$
\begin{aligned}
& s_{1}=t_{1} \\
& s_{2}=t_{1}+t_{2} \\
& s_{3}=t_{1}+t_{2}+t_{3} \\
& s_{4}=t_{1}+t_{2}+t_{3}+t_{4}
\end{aligned}
$$

In general,

$$
\begin{gathered}
s_{n}=\frac{n}{2}[2 a+(n-1) d] \\
a \text { is } \\
d \text { is } \\
n \text { is }
\end{gathered}
$$

Or the formula can be written as :

$$
\begin{aligned}
& s_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& s_{n}=\frac{n}{2}[a+a+(n-1) d] \\
& s_{n}=\frac{n}{2}\left[t_{1}+t_{n}\right] \\
& s_{n}=n\left[\frac{t_{1}+t_{n}}{2}\right]
\end{aligned}
$$

And so, we have two different versions of the same formula.

Examples:

1. Find the sum of the first 100 terms of $8+11+14+\ldots$
2. Find the sum of $1.1+1.2+1.3+1.4+\ldots+8.9$
3. If the sum of n terms of a sequence is given by $S_{n}=n^{2}+n$, find t_{11}.
