U7D3_T Geometric Sequences

U7D3 T
Geometri..

$$
\begin{aligned}
& \text { U7D3MCR3UI Geometric Sequences } \\
& \text { What is similar about the following sequences? } \\
& \text { 1. } \\
& \begin{array}{l}
\text { 2. }
\end{array} \underbrace{\text { exponential }}_{\text {* all are }} \begin{array}{l}
\text { functions }
\end{array} \\
& \text { * } \\
& \text { they all } \\
& \text { nave a }
\end{aligned}
$$

All of these sequences are classified as geometric sequences since each term is generated
by multiplying the previous term by the same amount called the COMMON RATIO.

> A geometric sequence looks like : $$
\frac{a, a r, a r^{2}, a r^{3}, \ldots \text { or }}{\text { In general, } \underline{t_{n}=a r^{n-1}}}
$$ $t_{n}=$ general term or $\mathrm{n}^{\text {th }}$ term $a=$ first term $n=$ term number or number of terms $r=$ common ratio or multiplying factor

Examples:

1. Determine t_{n} and t_{10} for the following geometric sequences:

$$
\begin{array}{ll}
\text { a) }{\underset{x 4}{2}, \underbrace{20}_{\times 4} 80,320 \cdots}_{x+4}^{3} \cdots & t_{10}=5(4)^{10-1} \\
a=5 \quad r=4 & t_{10}=5(4)^{9} \\
t_{n}=5(4)^{n-1} & \\
t_{10}=1310720
\end{array}
$$

b) $2,-\frac{3}{2}, \frac{9}{8},-\frac{27}{32}$

$$
a=2 \quad r=-\frac{3}{4}
$$

$$
t_{n}=2\left(-\frac{3}{4}\right)^{n-1}
$$

$$
t_{10}=\frac{2(-3)^{9}}{4^{9}}
$$

$$
\begin{gathered}
r=\frac{-27}{32} \div \frac{9}{8} \quad r=\frac{9}{8} \div \frac{-3}{2} \\
r=\frac{-27}{32} \times \frac{8}{9} \quad r=\frac{9}{8} \pi \frac{2}{3} \\
r=\frac{-3}{4} \quad r=-\frac{3}{4} \\
r=-\frac{3}{2} \div \frac{2}{1} \\
r=\frac{-3}{2} \times \frac{1}{2} \\
r=\frac{-3}{4}
\end{gathered}
$$

$$
t_{10}=\frac{-19683}{131072}
$$

\therefore common ratio $-\frac{3}{4}$
2. Determine the number of terms in the sequence $3,6,12,24$. . . 96.

$$
a=3 \quad r=2 \quad n=? \quad t_{n}=96
$$

Method: $3(2)^{n-1}=96$ isolate trial i error method.

* Common base $2^{n-1}=96 \div 3$

$$
\left.\begin{array}{ll}
2^{n-1}=32 & \begin{array}{l}
\text { write } \\
32 \text { as } \\
\text { a power }
\end{array} \\
2^{n-1}=2^{5} & \text { of } 2
\end{array}\right\} \begin{array}{ll}
\text { set } \\
n-1=5 & \text { expose } \\
n=6 & \text { equal }
\end{array}
$$

$$
\begin{array}{l|l|}
n & 3(2)^{n-1} \\
& \\
& \\
&
\end{array}
$$

\therefore there are six terms in this finite geometric sequence.
3. Determine t_{10} if for each of the following geometric sequences: $t_{n}=a r^{n-1}$
a) $a r^{2}=15 \quad a r^{5}=-405$
a) if $\begin{aligned} & a r t_{3}=15 \text { and } t_{6}{ }^{5}=-405 \\ &=-405 \text { Elimination Method }\end{aligned}$
substitution Method
(1)

$$
\begin{aligned}
& \text { (1) } a r^{2}=15 \text { (2) } a r^{5}=-405 \\
& a=\frac{15}{r^{2}}
\end{aligned} \begin{gathered}
\frac{15}{r^{2}}\left(r^{5}\right)=-405 \\
\vdots \\
r^{3}=-27
\end{gathered} \text {, }
$$

need \pm in front of an ODD root.

$$
\frac{1 a r^{5}}{a r^{2}}=\frac{-405}{15}
$$

* BETTER*
$r^{5-2}=-27$
$r^{3}=-27$
$r=\sqrt[3]{-27}$
$r=-3$

$$
\begin{aligned}
& t_{10}=a r^{10-1} \\
& t_{10}=\frac{5}{3}(-3)^{9} \\
& t_{10}=-32805
\end{aligned}
$$

3. continued... Determine t_{10} if for each of the following geometric sequences:

$$
a r^{n-1}=t_{n}
$$

b) if $t_{3}=60$ and $t_{7}=960$.

$$
\begin{gathered}
\frac{a r^{6}}{a r^{2}}=\frac{960}{60} \quad \begin{array}{c}
a r^{2}=60 \\
a(2)^{2}=60 \\
a=15
\end{array} \\
\left.r^{4}=16 \quad 4\right) \\
r= \pm 24 \text { need } \\
\pm \text { since } \\
\text { we are taking } \\
(-2)^{4}=16 \quad \begin{array}{l}
\text { the 4 th root } \\
(2)^{4}=16
\end{array} \quad \text { an EVEN root. }
\end{gathered}
$$

4. Express the geometric sequences defined by the general term $t_{n}=3\left(\frac{2}{5}\right)^{n-1}$, as a recursive sequence.

$$
t_{k}=\left(t_{k-1}\right)\left(\frac{2}{5}\right), t_{1}=3, \quad k \in \mathbb{N}, k>1
$$

or $t_{k}=\frac{2}{5} t_{k-1}, t_{1}=3$
or $t_{k}=t_{k-1} \times\left(\frac{2}{5}\right), t_{1}=3$
or $t_{k+1}=t_{k}\left(\frac{2}{5}\right), t_{1}=3$

U7D3 Practice: p. 452 \#1-7(eoo), 9, 12, 16

