Introduction

A function can be used to generate a sequence of numbers :

Example: $f(x)=x^{2}$ generates
$f(1)=$
$f(2)=$
$f(3)=$
$f(4)=$

We have the sequence $1,4,9,16 \ldots$.
Thus a sequence is the set of numbers generated by a function, $f(x)$, if x is restricted to the Natural Numbers.

$$
N=\{
$$

Each element in a sequence is referred to as a \qquad . We use
t with a \qquad to indicate a specific \qquad .
i.e., $t_{1}=$
$t_{2}=$
$t_{3}=$
$t_{4}=$
Types of Sequences

1. Finite Sequences :

e.g., 1, 4, 9, 16, 25
2. Infinite Sequences :
e.g., 1, 4, 9, 16, 25, 36, ...

In general, sequences can be generated using functions that utilize individual or combined mathematical operations, or even previous numbers in the sequence.

1. Arithmetic Sequences:

$t_{n}=n+6$

2. Geometric Sequences:

$t_{n}=-3^{n}$

3. Recursive Sequences:

$t_{k+2}=t_{k}+t_{k+1}$, where $t_{1}=1$ and $t_{2}=1$
Examples:

1. Write the first 3 terms for the following sequences:
a) $t_{n}=n^{3}-5$
b) $t_{n}=n^{2}+2 n$
c) $t_{k}=t_{k-1}+k$, where $t_{1}=5$
2. Write the general term for each of the following.
a) $5,6,7,8 \ldots$
b) $2,5,8,11 \ldots$
c) $1,3,9,27, \ldots$
c) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5} \ldots$.
d) $2, \frac{3}{4}, \frac{4}{9}, \frac{5}{16}, \ldots$
e) $2, \frac{15}{8}, \frac{7}{4}, \frac{13}{8}, \frac{3}{2}, \ldots$
f) $4,7,10,13 \ldots$
g) $-3,0,5,12, \ldots$
h) $3,9,19,33,51, \ldots$
