U7D1 SEQUENCES AND SERIES
Introduction
A function can be used to generate a sequence of numbers:

Example: $f(x)=x^{2}$ generates

$$
f(1)=\underbrace{f(4)=16}_{f(2)=4} \quad f(3)=9
$$

We have the sequence $1,4,9,16 \ldots$.
Thus a sequence is the set of numbers generated by a function, $f(x)$,
if x is restricted to the Natural Numbers.

$$
N=\{1,2,3,4, \ldots\}
$$

Each element in a sequence is referred to as a
\qquad . We use
tooth a \qquad subscript to indicate a specific term . $1,4,9,16 \ldots$

$$
\begin{array}{llr}
\text { i.e., } t_{1}=1 & t_{2}=4 & t_{3}=9 \\
t_{4}=16 \cdots \\
\cdots(1)=1 & f(2)=4 & f(3)=9 \\
t_{1}=1 & t_{2}=4 &
\end{array}
$$

Types of Sequences

1. Finite Sequences :

sets of a limited number of numbers that follow a mathematical pattern
e.g., 1, 4, 9, 16, 25 has exactly five
terms
2. Infinite Sequences:
sets of an unlimited number of numbers that follow a mathematical pattern

$$
\text { e.g., 1, 4, 9, 16, 25, } 36 \ldots . . . \text {. an }
$$

unlimited number of terms
In general, sequences can be generated using functions that utilize individual or combined mathematical operations, or even previous numbers in the sequence.

1. Arithmetic Sequences: sets of numbers with a common difference generated from a linear function, $f(n)$, with $n \in \mathbb{N}$
E.g., $\boldsymbol{t}_{n}=n+6$
generates the sequence: $7,8,9, \ldots$
2. Geometric Sequences: sets of numbers with a common ratio generated from an exponential function, $f(n)$, with $n \in \mathbb{N}$.
E.g., $\quad \vdash^{-(3)^{n}}$
$t_{n}=-3^{n}<\operatorname{not}(-3)^{n}$
generates the sequence: $-3,-9,-27, \ldots$
3. Recursive Sequences: sets of numbers generated by using previous numbers in the sequence.
E.g., \rightarrow to find any term, add the previous two $t_{k+2}=t_{k}+t_{k+1}$, where $t_{1}=1$ and $t_{2}=1$ terms.
generates the sequence
$1,1,2,3,5,8,13,21$

$$
\begin{gathered}
t_{n}=2 \times t_{n-1}, \\
\\
t_{1}=7
\end{gathered}
$$

Fibonacci Sequence $7,14,28,56 \ldots$

Examples:

1. Write the first 3 terms for the following sequences:

$$
\begin{aligned}
t_{1} & =1^{3}-5 \\
& =-4
\end{aligned} \quad t_{2}=2^{3}-5
$$

a) $t_{n}=n^{3}-5$

$$
\begin{aligned}
t_{3} & =3^{3}-5 \\
& =22
\end{aligned}
$$

$$
-4,3,22
$$

b) $t_{n}=n^{2}+2 n$

$$
\begin{gathered}
t_{1}=1^{2}+2(1) \quad t_{2}=2^{2}+2(2) \\
=3 \\
t_{3}=3^{2}+2(3) \\
=15
\end{gathered}
$$

$$
3,8,15
$$

c) $t_{k}=t_{k-1}+k$, where $t_{1}=5$

$$
\begin{array}{lll}
t_{2}=t_{1}+2 & t_{3}=t_{2}+3 & t_{4}=10+4 \\
t_{2}=7 & t_{3}=10 & t_{4}=14
\end{array}
$$

To find any term, take the term before and add the current term number.

$$
\frac{|5,7,10,14|}{\underbrace{}_{\substack{\text { first three } \\ \text { terms }}}}
$$

2. Write the general term for each of the following.

$$
\begin{aligned}
& \text { c) } \begin{array}{r}
n=1, n=2 \\
1,3,9,
\end{array} \\
& \text { 1,3, 9, 27, } \\
& \times 3 \times 3+3 \leftarrow \text { Com } \\
& \begin{array}{l}
\text { Common } \\
\text { ratio }
\end{array} \\
& t_{n}=1(3)^{n-1} \\
& \text { d) } \frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \frac{4}{5} \cdot \ldots \quad t_{n}=3^{n-1} \\
& t_{n}=3^{n-1} \\
& t_{n}=\frac{n}{n+1}
\end{aligned}
$$

$\begin{aligned} & \frac{2}{1} \\ & \text { e) } \frac{\downarrow}{2, \frac{3}{4}, \frac{4}{9}, \frac{5}{16}, \cdots} \\ & \frac{1}{\text { perfect es }} \text {, }\end{aligned} t_{n}=\frac{n+1}{n^{2}}$
f) $\frac{x^{8}}{8}, \frac{15}{8}, \frac{7}{4}, \frac{x^{2}}{8}, \frac{3}{2}, \ldots$ try-a common denominator

$$
\begin{aligned}
& t_{n}=\frac{-n+17}{8} t_{n}=\frac{17-n}{8}
\end{aligned}
$$

g) $4,7,10,13$.

$$
t_{n}=3 n+1
$$

$n^{2}=149916$

$7^{3} v^{5} V^{7} \leftarrow 2^{\text {nd }}$ differences

$$
t_{n}=n^{2}-4
$$

$2 a$ same \Rightarrow quadratic
(n) $281832502 n^{2}$
i) $3,9,19,33,51, \ldots$

$$
t_{n}=2 n^{2}+1
$$

$\therefore \rightarrow$ 位
$=$ (a) $x^{2}+b x+c$

